

Stand-Alone Datalogger
with a

 Graphical User Interface

Final Year Electronic & Computer
Engineering Project Report

Paul Boyle

Supervisor: Pat Byrne
April 2002

Electronic & Computer Engineering Acknowledgements

Acknowledgements
This project was made possible by the efforts and talents of many people. I want to
express my appreciation to my project supervisor Pat Byrne for her support and advise
through the course of this project.

At this point, the end of my time in the NUI Department of Electronic Engineering, I
want to express my gratitude to all members of the Department who have helped me in
any way during the past two years.

Also, many thanks to Aodh, Martin and Myles in helping me with the design and
construction of the prototype Logger board. I also wish to thank the many contributions
to this project. Without their input, this project would be next to impossible.

Lastly, but most importantly, I thank my parents and family. Whatever I have achieved,
or may achieve in the future, is a result of their support and effort. I hope that some day I
can begin to repay them.

Many thanks to all Paul Boyle

Stand-Alone Datalogger with GUI 2

Electronic & Computer Engineering Abstract

Abstract
This report describes a final year Electronic & Computer Engineering project entitled
“Stand-Alone DataLogger with Graphical User Interface”. This project involves
designing and constructing a Stand-Alone Datalogger that can be used to monitor
temperature inside a drinks vending machine and, which the user interacts with the
DataLogger in the initializing and data-downloading modes through a Graphical User
Interface (GUI).

This project is both hardware and software based with the software being developed in
Java and the hardware being based around the 8051 Microcontroller chip developed by
Analog Devices.

This report will describe the passage from design feasibility to final operation of the
Stand-Alone Datalogger. The project was completed by Paul Boyle under the
supervision of Pat Byrne. This report was submitted to the Department of Electronic
Engineering, National University of Ireland Galway, in April 2002.

Stand-Alone Datalogger with GUI 3

Electronic & Computer Engineering Contents

CONTENTS

1. AIMS & OBJECTIVES ..7

2. INTRODUCTION..8

3. BACKGROUND ..9

3.1. ADUC812 OVERVIEW ..9

3.1.1. ADuC812 Features ..9

3.2. WHAT IS I2C?..10

3.2.1. Principles of the I2C Bus ..10

3.2.2. How the I2C Bus Operates ...12

3.3. SERIAL PORT OVERVIEW ..12

3.4. JAVA OVERVIEW...13

3.4.1. Java Features...14

3.4.2. Java Pros ...15

3.4.3. Java Cons...15

4. CIRCUIT DESCRIPTION ...16

4.1. CENTRAL CONTROL UNIT ...17

4.2. ANALOGUE-TO-DIGITAL CONVERTER UNIT..20

4.3. MEMORY UNIT ...22

4.4. REAL TIME CLOCK UNIT ..24

4.5. RS232/TTL TRANSLATOR UNIT...25

5. ADUC812 SOFTWARE DEVELOPMENT..26

5.1. INTRODUCTION ...26

5.2. DESCRIPTION OF MAIN CODE ...26

5.3. LCD OPERATION ..29

5.3.1. Program Variables...29

5.3.2. Description of Code ...30

5.4. TEMPERATURE OPERATION ..34

5.4.1. Description of Code ...34

5.5. ADUC812 I2C OPERATION ...37

5.5.1. Program Variables...37

5.5.2. Description of Code ...38

Stand-Alone Datalogger with GUI

4

Electronic & Computer Engineering Contents

5.6. SCAN INTERVAL LOOP OPERATION...42

5.6.1. Program Variables...42

5.6.2. Description of Code ...42

5.7. REAL TIME CLOCK OPERATION ..44

5.7.1. Program Variables...44

5.7.2. Description of Code ...45

6. JAVA SOFTWARE DEVELOPMENT...48

6.1. INTRODUCTION ...48

6.1.1. What is a Design Pattern? ...48

6.2. LOGGERUI APPLICATION..49

6.2.1. Specifications ...49

6.2.2. Dataflow Diagrams..50

6.2.3. Class Diagrams..52

6.2.4. LoggerUIs Superclasses...53

6.2.5. LoggerUIs Framework Details ..54

6.3. DESIGN BY CONTRACT..57

6.3.1. LoggerUncheckedException ..58

6.4. ACTIONSITE..60

6.4.1. LoggerMenu...60

6.5. LOGGER CHECK ..62

6.6. LOGGER SETUP ...63

6.7. SERIAL PORT INTRODUCTION..64

6.7.1. javax.comm extension package..64

6.7.2. InitialisePort ..66

6.8. GRAPH INTRODUCTION ...68

6.8.1. LoggerLineGraphUI ..68

6.8.1.1. The Overriden reshape method...69

6.8.1.2. The Overriden paint method ...70

6.8.1.3. Adding and Removing items to be Graphed ...70

6.8.2. GraphItem Class ..71

6.8.2.1. Plotting the GraphItems..71

Stand-Alone Datalogger with GUI

5

Electronic & Computer Engineering Contents

7. PROBLEMS ENCOUNTERED...74

7.1. ADUC812 PROBLEMS ENCOUNTERED ..74

7.2. JAVA PROBLEMS ENCOUNTERED ..75

8. CONCLUSION ..78

APPENDIX A : ADUC812 REGISTER SETTINGS ...80

A.1. ADUC812 TMOD, TCON & SCON REGISTER SETTINGS82

A.2. I2C IMPLEMENTATION ON THE ADUC812..85

APPENDIX B : ADUC812 CODE..88

APPENDIX C : JAVA HELP ...101

C.1. HELPMAP.JHM FILE ...101

C.2. LOGGERUIINDEX.XML FILE ...102

C.3. LOGGERUITOC.XML FILE...103

C.4. HELPSET.HS FILE ...104

BIBLIOGRAPHY..105

Stand-Alone Datalogger with GUI

6

Electronic & Computer Engineering Aims & Objectives

1. Aims & Objectives
AIMS
1. To produce a Stand-Alone Datalogger which will interface with the PC though the

serial port of the host computer.

2. To design the circuitry for the Stand-Alone Datalogger which will incorporate the
Analog Devices ADuC812 microcontroller.

3. To design and write the software to implement the microcontroller operations.

4. To design and write the host computer software to allow the user to interface with the
Datalogger during its three modes of operation.

OBJECTIVES
1. To make a single sided circuit board to the minimum of size.

2. To ensure that the circuit board will utilise the appropriate supply lines for the ICs
and other discrete devices on the board.

3. To design the software to operate the microcontroller and allow it to communicate
with other devices on the circuit board and with the host computer.

4. To design the necessary programs to allow the host computer communication with the
Datalogger using the serial port, to be designed for and written in Java and to provide
a Graphical User Interface for the end user.

5. To present a report which should contain the passage from design feasibility to final
operation

Stand-Alone Datalogger with GUI 7

Electronic & Computer Engineering Introduction

2. Introduction
In environmental monitoring applications, parameters such as temperature, humidity,
water levels or pollution need to be monitored continuously over long periods. A
conventional personal computer based data acquisition system can be used but such a
system involves a computer and a Datalogger, making it expensive. Secondly, the
physical size is large. Thirdly, power assumption will be high, and this implies that a
powerful battery pack is required in the application where there is no mains supply.

A Stand-Alone Datalogger is a useful device for such an application. Firstly, it is
dedicated. Its only task is to acquire data and save the data into its memory. It can be
connected to a computer at any time to allow its collected data to be transferred and
analysed.

The Datalogger that has been designed will have one input. The input will be an
analogue input that will measure temperature.

The Datalogger will be used to monitor the conditions within a drinks vending machine.

The temperature sensor will monitor the temperature within the vending machine to make
sure the drinks are kept to the required temperature and any changes with the temperature
will be recorded i.e. time, day, month, year, and the temperature.

At the end of each day the Datalogger may be removed, (if required) from the vending
machine and connected to the host computer, and all the data is off-loaded onto the host
computer. This allows the logged data to be analyzed and permanently stored.

The connection between the host computer and the Datalogger is though serial port. This
is used because it is the common connection between peripherals and is more than
sufficient for the system needs i.e. don’t require high-speed data transfer between host
computer and the Datalogger.

When all the data has been off-loaded onto the host computer the user will again initialize
the Datalogger through the Graphically User Interface (GUI). This GUI will be
constructed from the Java language, and will be the users only way to interact with the
Datalogger.

Such a Datalogger will be made small in size and with ultra-low power consumption.
Such a Datalogger’s small size allows it to be placed in almost any location. It can
collect data continuously over a period of time without having its battery changed.

The Datalogger will be based around Analog Devices 8051 microcontroller (ADuC812).
This has a built-in temperature sensor and an Analogue-to-Digital Converter (ADC) with
a conversion accuracy of 12-bits as well as memory, although using external memory will
extend this. The ADuC812 does not contain a Real Time Clock (RTC) therefore a
dedicated RTC is used. The Datalogger will have a Liquid Crystal Display (LCD), which
displays to the user the current temperature read, what percentage of memory is
remaining and also informs the user what mode the Datalogger is in.

When driven by a lithium 9V PP3 sized battery it could capture data for a month or so
unattended.

Stand-Alone Datalogger with GUI 8

Electronic & Computer Engineering Background

3. Background
3.1 ADuC812 Overview

Analog Devices ADuC812 is a fully integrated 12-bit data acquisition system
incorporating a high performance self- calibrating multichannel Analogue-to- Digital
Converter (ADC), two 12-bit Digital-to-Analogue Converters (DAC) and programmable
8-bit (8051-compatible) MCU on a single chip.

The programmable 8051-compatible core is supported by 8K bytes Flash/EE program
memory, 640 bytes Flash/EE data memory and 256 bytes data SRAM on-chip.

Additional MCU support functions include watchdog timer, power supply monitor and
ADC DMA function. 32 programmable I/O lines, I2C-compatible, SPI and standard
UART serial port I/O are provided for multiprocessor interfaces and I/O expansion.

Normal, idle and power-down operating modes for both the MCU core and analogue
converters allow for flexible power management schemes suited to low power
applications.

3.1.1 ADuC812 Features
Analogue I/O features:

• Eight channel, high accuracy 12-bit ADC

• On-chip, 40 ppm/oC voltage reference ADC-to-RAM capture

• Two 12-bit voltage output DACs

• On-chip temperature sensor function

• High speed 200 kSPS

• DMA controller for high speed

Memory features:

• 8K bytes on-chip flash/EE program memory

• 640 bytes on-chip flash/EE data memory

• On-chip charge pump (No Ext. Vpp requirements)

• 256 bytes on-chip data RAM

• 16M bytes external data address space

• 64K bytes external program address space

8051-Compatible core:

• 12 MHz nominal operation (16MHz max)

• Three 16-bit timer/counters

• 32 programmable I/O lines

• High current drive capability—Port 3

• Nine interrupt sources, two priority levels

Stand-Alone Datalogger with GUI 9

Electronic & Computer Engineering Background

Power features:

• Specified for 3V and 5V operation

• Normal, idle and power-down modes

On-chip peripherals:
• UART serial I/O

• 2-wire (I2C compatible) an SPI serial I/O

• Watchdog timer

• Power supply monitor

3.2 What is I2C bus?
Devised by Phillips, I2C stands for inter-IC-communication. It is a data bus that allows
integrated circuits or modules to communicate with each other.

The bus allows data and instruction to be exchange between devices via only two wires.
This greatly simplifies the design of a complex electronic circuits. There is a family of
I2C compatible devices available for various applications. They include I/O expansion,
analogue-to-digital and digital-to-analogue conversion, time keeping, memory and
frequency synthesis, etc.

3.2.1 Principle of the I2C bus

The I2C bus consists of two lines: a bi-directional data line called SDA and a clock line
called SCL. Both are pulled up to the positive power supply via resistors. An I2C bus
system is shown in Fig. 3-1

Fig. 3-1. An I2C bus consists of only
two dta lines: serial, SCL and serial
data, SDA. I2Ccompatible devices
connect to the bus using these tow
wires, making hardware design
simpler.

A device generating a message is a ‘transmitter’ while a device receiving a message is the
‘receiver’. The device controlling the bus operation is the ‘master’ and devices controlled
by the master are ‘slaves’.

The following communication protocol is defined:

 A data transfer may be initiated only when the bus is not busy

 During the data transfer, the data line must remain stable whenever the clock line is
high.

Stand-Alone Datalogger with GUI 10

Electronic & Computer Engineering Background

Changes in the data line while the clock line is high is interpreted as control signals. The
following bus conditions are defined, Fig. 3-2

Fig. 3-2. Timing sequence for Bus Not
Busy, Start, Stop and Acknowledgement.

 Bus not busy: both data and clock lines remain high

 Start data transfer: a both in the state of the data line from high to low while the
clock is high, defines the start condition

 Stop data transfer: A change in the state of the data line from low to high while the
clock is high defines the stop condition.

 Data valid: The state of the data line represents valid data after a start condition. The
data line is stable for the duration of the high period of the clock signal. The data on
the line may be changed during the period of the clock signal. There is one clock
pulse per bit data. Each data transfer is initiated with start condition and terminated
with a stop condition. The number of data bytes transferred between the start and
stop conditions is not limited. The information is transmitted byte-wise and the
receiver acknowledges with a ninth bit.

 Acknowledge bit: Each byte is follow by an acknowledge bit. The acknowledge bit
is a high level put on the bus by the transmitter whereas the master generates an extra
acknowledge bit is a low level put on the bus by the receiver. A slave receiver which
is addressed is obliged to generate an acknowledge bit after the reception of each
byte.

The device that acknowledges has to pull down the SDA line during the acknowledge
clock pulse in such a way that the SDA line is at a stable low state during the high period
of the acknowledge related clock pulse. A master receiver must signal an end to the slave
transmitter by not generating an acknowledge on the last byte that has been clocked out
of the slave.

Stand-Alone Datalogger with GUI 11

Electronic & Computer Engineering Background

3.2.2 How the bus operates.
Before any data is transmitted on the bus, the device that should respond is addressed
first. This is carried out with the seven-bit address byte plus R/-W bit transmitted after a
start condition. A typical address byte has the following format:
Fixed Address bits = Programmable address bits + R/-W bit
(in total 8 bits)

The fixed address depends son the IC and it cannot be changed. * The programmable
address bits can be set using the address pins on the chip. The last bit is the read/write bit
indicates the direction of the data flow. The byte following the address byte in the
control byte, which depends on the IC, used. Following the control byte are the data
bytes. The serial data has the same format shown in Fig. 4-12.

*Although some I2C devices have inputs that can modify the address depending on their
logic state, allowing more than one of the same IC to be used on the bus.

3.3 Serial Port
Microcontroller’s have proven to be quite popular recently. Many of these have in built
SCI (Serial Communications Interface) that can be used to talk to the outside world.
Serial communication reduces the pin count. Only two pins are commonly used,
Transmit Data (TXD) and Receive Data (RXD) compared with at least 8 pins if you use an
8-bit parallel method.

Devices that use serial cables for their communications are split into two categories.
These are DCE (Data Communications Equipment) and DTE (Data Terminal Equipment.)
Data Communication Equipment are devices such as modem, TA adapter, plotter etc
while Data Terminal Equipment is your computer or terminal.

The electrical specifications of the serial port are contained in the EIA (Electronics
Industry Association) RS232C standard. It states many parameters such as:

1. A “Space” (logic 0) will be between +3 and +25 volts

2. A “Mark” (logic 1) will be between –3 and –25 volts

3. The region between +3 and –3 volts is undefined

4. An open circuit voltage should never exceed 25 volts (in reference to GND)

5. A short circuit should not exceed 500mA. The driver should be able to handle this
without damage

Above is no were near the complete list of the EIA standard. Line Capacitance,
maximum baud rate etc are also included.

Serial ports come in two sizes. There are the D-Type 25 pin connector and the D-Type 9
pin connector, both of which are male at the back of the PC, thus you will require a
female connector on your device.

Stand-Alone Datalogger with GUI 12

Electronic & Computer Engineering Background

Name Address IRQ

COM1 3F8 4

COM2 2F8 3

COM3 3E8 4

COM4 2E8 3

Table 3-1: Stand Port Addresses

Table 3-1 shows the standard port address. These should work for most PC’s. The base
addresses for the COM ports can be read from the BIOS Data Area.

Start Address Function

0000:0400 COM1’s Base Address

0000:0402 COM2’s Base Address

0000:0404 COM3’s Base Address

0000:0406 COM4’s Base Address

Table 3-2 COM Port Addresses
in the BIOS Data Area

Table 3-2 shows the address at which we can find the COM ports addresses in the BIOS
Data Area. Each address will take up to 2 bytes.

3.4 Java

Java, formerly known as oak, is an object-oriented programming language developed by
Sun. It shares many superficial similarities with C, C++, and Objective C (for instance
for loops have the same syntax in all four languages); but it is not based on any of those
languages.

The language was originally created because C++ proved inadequate for certain tasks.
Since the designers were not burdened with compatibility with existing languages, they
were able to learn from the experience and mistakes of previous object-oriented
languages. They added a few things C++ doesn't have like garbage collection and
multithreading; and they threw away C++ features that had proven to be better in theory
than in practice like multiple inheritance and operator overloading.

Even more importantly Java was designed from the ground up to allow for secure
execution of code across a network, even when the source of that code was entrusted and
possibly malicious. This required the elimination of more features of C and C++. Most
notably there are no pointers in Java. Java programs cannot (at least in theory) access
arbitrary addresses in memory.

Furthermore Java was designed not only to be cross-platform in source form like C, but
also in compiled binary form. Since this is frankly impossible across processor

Stand-Alone Datalogger with GUI 13

Electronic & Computer Engineering Background

architectures, Java is compiled to an intermediate byte-code that is interpreted on the fly
by the Java interpreter. The interpreter must be written for your particular computer.
Java is the closest thing we have to a universal computer language, which means it runs
on all computers (as long as a Java virtual machine has been written for them). Thus to
port Java programs to a new platform all that is needed is a port of the interpreter and a
few native code libraries.

.3.4.1 Java Features

• Cross Platform: Java is a cross platform language. The Java compiler compiles
Java source code into "bytecodes". These bytecodes are then interpreted by a
Java "virtual machine" that is written for the processor architecture the program is
running on. This means that your Java Applet will run on any platform that has a
Java interpreter. This kind of platform independence is essential for a
heterogeneous platform like the Internet or even corporate Intranets.

• Software Distribution: In the case of applets, the Java bytecodes are downloaded
at run-time, so the user is always getting the most current code. This solves all
sorts of software distribution nightmares that enterprises have traditionally had to
contend with.

• Security: Java was designed to verify and execute binary programs in a controlled
environment. This protects the end-user's computer from viruses and security
violations. Whenever a Java applet is transferred to the user's browser, it is
subject to byte-code verification. This means that if the packet's size is changed
along the way, the program will be aborted. This checking guards against Trojan
horses and viruses being added to the Java bytecodes.

• Easier to program than C++, and just as powerful! Here are some of the
advantages of Java over C++:

o No pointers: The Java language passes all arrays and objects by reference
but does not have an explicit pointer type. This prevents the programmer
from constructing a reference to anonymous memory.

o Automatic garbage collection - The Java interpreter manages the memory,
it is not the programmer's responsibility.

o C++ style Exceptions are automatically generated when dereferencing a
NULL pointer, accessing outside the bounds of an array, or running out of
memory.

• Network protocol handlers: Support for HTTP, FTP, NNTP, MIME, and Sockets
make it sort of a "network programming language."

Stand-Alone Datalogger with GUI 14

Electronic & Computer Engineering Background

 3.4.2 Java Pros
• Java allows HTML writers the ability to take their pages from static information

to interactive applications.

• Java has broad industry support. It has been licensed by: Netscape, Spyglass,
Wollongong, Microsoft, Oracle, Novell, Borland and Symantec.

• Java runs on many platforms. Sun distributed versions of the compiler and
interpreter for the Mac, Solaris, Windows 95 and NT. IBM is working on versions
for OS/2 and Windows 3.1.

3.4.3 Java Cons
• Currently, Java lacks 'persistent' objects. Let's say you go to a Web site with a

Java applet and wait for several minutes for your browser to download it. The
next time you visit the site, you need to wait all over again (unless the applet is
still in your browser's cache). Persistence would allow you to store the applet on
your PC the first time you download it, and only download it again if the applet
has changed.

• Even though Java was designed to take some of the complexities out of coding in
a language like C++, it did evolve from C++ and is similar in some ways.
Programmers that don't want to learn C++ may not expend the time and energy to
learn to code in Java.

• There is no usage metering capabilities. For example: once everyone has Java
Applets on their Web pages, and anyone can run them, how do you charge people
for your software? Many believe hooks for this kind of processing needs to be
built into the Java language.

• Other areas of Java that need to be improved:

o Lacks multimedia objects.

o Lacks a Visual Development Environment like Visual Basic or Delphi -
although many vendors are working on this right now, including Borland,
Symantec, Powersoft, IBM, Sunsoft, and many others.

o No imaging support.

o Only supports Sun's audio format.

Stand-Alone Datalogger with GUI 15

Electronic & Computer Engineering Circuit Description

4. Circuit Description
The Datalogger has three operation modes. These are the initialisation mode, the data
logging mode and the data-downloading mode.

In initialisation mode, the user specifies the start time of data logging and scanning
interval – i.e. the period between two consecutive data loggings. Plugging the Datalogger
to the serial port of a host computer does this.

After initialisation, the logger enters data logging mode. It can now be disconnected
from the computer and placed to a designated location. The Datalogger converts
analogue signal into digital data at a fixed interval and stores the data into memory with a
time stamp comprising the year, month, day, of week, hour, minute, second and
temperature into memory.

Data logging is terminated either by pressing the reset button on the logger or when
memory is full. At this point, the logger is connected to the host computer once more for
data downloading. During downloading, the data stored in the Datalogger is transferred
in to the host computer.

Figure 4-1 shows the logger’s block diagram. The system comprises of six units. They
are:

 Central controller based on the ADuC812

 LM031L LCD unit

 24LC64 memory unit

 DS1302 real time clock

 Power supply

The system utilises only three key ICs, namely the controller, the memory and the real
time clock. The ADuC812 has a built in analogue-to-digital converter with a conversion
accuracy of 12-bits, it also has a built in UART which is used to communicate to and a
temperature sensor The 64Kbyte EEPROM and the real time clock communicate with the
ADuC812 via an I2C bus. The ADuC812 manages responses to incoming event signals
and stores time stamps in the memory. It also controls communication with the host
computer via the serial port.
 Fig. 4-1. The

central control
unit controls
all operations
of the
Datalogger.
Four main
elements are
the a-to-d
converter unit,
the real-time
clock the
memory unit
and the
RS232/TTL
converter.

Stand-Alone Datalogger with GUI 16

Electronic & Computer Engineering Circuit Description

4.1 Central Control Unit

Fig. 4-2. Pin-out and the
internal block diagram of the
ADuC812 microcontroller. This
is a 52-pin quad pack device.

The ADuC812 is a highly integrated high accuracy 12-bit data acquisition system. At its
core, the ADuC812 incorporates a high performance 8-bit (8051 compatible) MCU with
on-chip reprogrammable non-volatile flash/EE program memory controlling a
multichannel (8-input channels), 12-bit ADC. The pin-out and the internal block diagram
of the ADuC812 are shown in fig. 4-2.

The chip incorporates all secondary functions to fully
support the programmable data acquisition core. These
secondary functions include User Flash Memory,
Watchdog Timer (WDT), Power Supply Monitor (PSM)
and various industry standard parallel and serial
interfaces.
As with all 8051 compatible devices, the ADuC812 has
separate address spaces for program and data memory as
shown in fig 4-3. Also shown in fig 4-3, additional 640
bytes of flash/EE data memory are available to the user.
The flash/EE data memory area is accessed indirectly
via a group of control registers mapped in the special
Function Register (SFR) area.
The lower 128 bytes of internal data memory are
mapped as shown in fig 4-4. The lower 32 bytes are
grouped into four banks of eight registers addressed as
R0 through R7. The next 16 bytes (128 bits) above the
register banks form a block of bit addressable memory
space at bit addresses 00H through 7FH.

Fig. 4-3. Shows the internal address
space for program and data
memory associated with compatible
8051 devices.

Stand-Alone Datalogger with GUI 17

Electronic & Computer Engineering Circuit Description

Fig 4-4. Shows the lower 128 bytes of internal
memory.

Fig. 4-5. Shows the
ADuC812 programming
model.

instructions will automatically carry over to DPP, o
(DPP, DPH, DPL).
The ADuC812 provides nine interrupt sources with
within a given level is shown in descending order o
general overview of the interrupt sources and illustr
The interrupt vector addresses for corresponding int
To use any of the interrupts on the ADuC812, the fo

1. Locate the interrupt service routine at the co
interrupt. See Table 4-1.

2. Set the EA (enable all) bit in the IE SFR to
3. Set the corresponding individual interrupt b

Stand-Alone Datalogger with GUI

The SFR space is mapped in the upper
128 bytes of internal data memory space.
The SFR area is accessed by direct
addressing only and provides an interface
between the CPU and all on-chip
peripherals. The block diagram of the
programming model for the ADuC812
via the SFR area is shown in fig 4-5.
ACC is the Accumulator register and is
used for math operations including
addition, subtraction, integer
multiplication and division, and Boolean
bit manipulations. The mnemonics for
accumulator-specific instructions refer to
the Accumulator as A.
The B register is used with the ACC for
multiplication and division operations.
For other instructions it can be treated as
a general-purpose scratchpad register.
The Data Pointer is made up of three 8-
bit registers, named DPP (page byte),
DPH (high byte) and DPL (low byte).
These are used to provide memory
addresses for internal and external code
access and external data access. It may be
manipulated as a 16-bit register (DPTR =
DPH, DPL), although INC DPTR
r as three independent 8-bit registers

 two priority levels. Interrupt priority
f priority in fig. 4-6, which gives a
ates the request and control flags.
errupts are also included in Table 4-1
llowing three steps must be taken.
rresponding Vector Address of that

“1”.
it in the IE SFR to “1”.

18

Electronic & Computer Engineering Circuit Description

Interrupt Interrupt Name Interrupt
Vector Address

Priority
Within Level

PSMQ Power Supply Monitor 43H 1
IE0 External INT0 03H 2
ADCI End of ADC

Conversion
33H 3

TF0 Timer 0 Overflow 0BH 4
IE1 External INT1 13H 5
TF1 Timer 1 Overflow 1BH 6
I2CI/ISPI Serial Interrupt 3BH 7
RI/TI UART Interrupt 23H 8
TF2/EXF2 Timer 2 Interrupt 2BH 9

Table 4-1.
Shows the
Interrupt
Vector
Addresses.

Three SFRs are used to enable and set the priority for the various interrupts, for this
project however the priority levels are kept to their default settings and only interested in
the first Interrupt Enable SFR.
The bit designation for this register is shown in appendices A

Fig. 4-6. Shows the Interrupt Request Sources.

Stand-Alone Datalogger with GUI 19

Electronic & Computer Engineering Circuit Description

4.2 Analogue-to-Digital Converter Unit

The analogue-to-digital converter (ADC) conversion block incorporates a 5µs, 8-channel
12-bit, single supply analogue-to-digital converter. This block provides the user with
multichannel mux, track/hold, on-chip reference, calibration features and analogue-to-
digital converter. All components in this block are easily configured via a 3-register SFR
interface.

The analogue-to-digital converter consists of a conventional successive approximation
converter and accepts an analogue input range of 0 to +VREF. A high precision, low drift
calibrated 2.5V reference is provided on-chip. The internal reference may be overdriven
via the external VREF pin.

Single step or continuous conversion modes can be selected in software or, alternatively
by applying a convert signal to an external pin however, the Datalogger is configured for
single step conversions and will be configured to automatically start a new conversion on
each overflow of the Scan_Rate (see 5.6), thereby allowing repetitive conversions at a
user selectable sample rate.

The analogue input range for the ADC is 0v to VREF. For this range, the designed code
transitions occur midway between successive integer LSB values. The ideal input/output
transfer characteristics for the 0 to VREF range is shown in fig 4-8.

Fig. 4-8. Shows the analogue-
to-digital conversion transfer
function.

The ADC will convert the analogue input and provide an ADC 12-bit result word in the
ADCDATAH/L SFRs. The top four bits of the ADCDATAH SFR will be written with the
channel selection bits to identify the channel result. The format of the ADC 12-bit result
word is shown in fig. 4-9.

Fig. 4-9. Shows the
analogue-to-digital
conversion result format.

Stand-Alone Datalogger with GUI 20

Electronic & Computer Engineering Circuit Description

The on-chip ADC has been designed to run at a maximum speed of one sample every 5µs
(i.e., 200KHz sampling rate). Therefore, in an interrupt driven routine the user software
is required to service the interrupt, read the ADC result and store the result for further
post processing, all within 5µs otherwise the next ADC sample could be lost. This
however, will not affect the Datalogger as it is configured as single step and the minimum
amount of time between consecutive conversions will be one minute.

Stand-Alone Datalogger with GUI 21

Electronic & Computer Engineering Circuit Description

4.3 Memory Unit

The memory unit is 24LC64 64Kbyte 2.5V SmartSerial EEPROM, which can be written
to and erased up to 1’000’000 times. This requires a power supply 2.5V to 6V with a
typical current consumption of 1mA in active mode and 1µA in standby mode.

Again, this device uses the I2C bus for data transfer and operates as a slave device. Pin-
out and the internal block diagrams of the chip are given in Fig. 4-10 and 4-11.

Fig. 4-10. Shows the pin-out
of the 24LC64.

Lines A0,A1 and A2 set the address of the chip. This allows up to eight chips to be used
on the same bus, giving 512Kbyte of memory capacity. Lines designated SCL and SDA
are the clock

Fig. 4-11. Details of the 24LS64 64Kbyte
EEPROM. It has an I2C bus comprising
a clock line, SCL, and a data line, SDA.

and data lines of the I2C bus. Data can be written to and read from the ROM via the I2C
bus. The write operation has two modes: byte-write mode and page-write mode. The
former writes a single byte to a memory location. Page-write mode writes 64 bytes to a
block in one go.

The read operations can be carried out in one of three modes: current address read,
random read and sequential read. The byte write modes and random read modes are used
in this application. Their timing sequence is described below, Fig. 4-12.

Fig. 4-12. Timing sequence required
for reading and writing 24LS64
EEPROM. The top diagram is the
byte write and the bottom diagram is
a random read.

Stand-Alone Datalogger with GUI 22

Electronic & Computer Engineering Circuit Description

The byte-write operation is as follows. Following a start condition on the I2C bus, the
control code, 10102, the ADuC812 places the device address on A2, A1 and A0, and the
R/-W bit on to the bus. The R/-W bit should be zero to indicate a write operation.
Address lines A2,A1 and A0 should be the same as the hardware setting on the memory
chip.

The next byte transmitted by the ADuC812 is the high-order byte of the address and will
be written into the address pointer of the 24LS64. The following byte is the least
significant address byte. After receiving another acknowledge signal from the 24LS64
the ADuC812 transmits the data byte into the memory.

Random-read mode allows the ADuC812 to access any memory locations in a random
manner. Following a start condition on the I2C bus, the control code, 10102, the
ADuC812 places the device address, A2, A1 and A0 and the zero R/-W bit into the bus.

The following byte transmitted by the ADuC812 is the high-order byte of the word
address and will be written into the address pointer of the 24LS64. The next is the least
significant address byte.

After receiving another acknowledge signal from the 24LS64 the ADuC812 generates a
start condition again and then it transmits the control byte to the memory. This time the
R/-W bit is 1 to indicate a read operation. The 24LS64 acknowledges and outputs the
addressed byte bit by bit. The ADuC812 finally generates a stop condition.

SCL and SDA are both controlled by the ADuC812. Both lines are pulled to +5V to form
the I2C bus. The ADuC812 permanently sets the SCL line on as an output. Data line
SDA is set as an input to the ADuC812 or an output according to I2C bus operations.

Stand-Alone Datalogger with GUI 23

Electronic & Computer Engineering Circuit Description

4.4 Real Time Clock Unit

The Real Time clock is a Dallas DS1302. It also communicates to the microprocessor
by I2C bus. The real time clock provides seconds, minutes, hours, day, date, month and
year information and can operate in either the 24-hour or 12-hour format with an AM/PM
indicator. Data can be transferred to and from the clock/RAM one byte at a time or in
burst of up to 24 bytes. The DS1202 is designed to operate on very low power and
retain data and clock information on less than 1 microwatt.

Fig. 4-13. Pin-out and internal block
diagram of the DS1302 timekeeper. It
has and I2C bus, making the hardware
design easier.

The pin-out and internal block diagram of the DS1302 is shown in fig 4-13. To initiate
any transfer of data RST is taken high and eight bits are loaded into the shift register
providing both address and command information. Data is serially input on the rising
edge of the SCLK as shown in fig 4-14.

Fig. 4-14. Timing
sequence of the DS1302
real time clock.

The first eight bits specify which of the bytes will be accessed, weather a read or write
cycle will take place, and weather a byte or burst mode transfer is to occur. After the first
eight clock cycles have occurred which load the command word into the shift register,
additional clocks will output data for a read or input data for a write.

The command byte is shown in fig 4-15. Each data transfer is initiated by a command
byte. The Most Significant Byte (bit 7) must be logic one. If it is a zero, further action
will be terminated. Bit 6 specifies clock/calendar data if logic zero or RAM data if logic
one. Bits one through five specify the designated registers to be input or output, and the
Least Significant Byte (Bit 0) specifies a write operation (input) if logic zero or read
operation (output) if logic zero. The command byte is always input starting with the LSB
(bit 0).

Fig. 4-15. Format of the
command byte to initialise
either a read or write
operation to the timekeeper.

Stand-Alone Datalogger with GUI 24

Electronic & Computer Engineering Circuit Description

4.5 RS232/TTL Translator Unit
The function of this unit is to perform voltage conversions between RS232 and TTL logic
levels. Since the ADuC812 has a built-in UART the voltage conversions are taken care of
by the ADuC812. Rx line is the line from which the logger receives data. The Tx signal
is the signal output from the logger, RS232 voltage level. The pin-out of the PC’s RS232
port connector and its functions are given in Fig. 4-16.

25 Pin 9 Pin Name Direction Description

 (from PC)
1 Prot ------------ Protective ground
2 3 TD Output Transmit data
3 2 RD Input Receive data
4 7 RTS Output Request to send
5 8 CTS Input Clear to send
6 6 DSR Input Data set ready
7 5 GND ------- Signal ground
8 1 DCD Input Data carrier detect
20 4 DTR Output Data terminal ready
22 9 RI Input Ring indicator
23 DSRD I/O Data signal rate detector

 Fig. 4-16. Pin-out of the RS232
port on IBM compatibles. In my
project, only the Tx transmits
output from the PC, the Rx input
and GND are used.

The serial port on the ADuC812 is full duplex, meaning it can simultaneously transmit
and receive. It is also receive-buffered, meaning it can commence reception of a second
byte before a previously received byte has been read from the received register.
However, if the first byte still hasn’t been read by the time reception of the second byte is
complete, one of the bytes will be lost.

Stand-Alone Datalogger with GUI 25

Electronic & Computer Engineering ADuC812 Software Development

5. ADuC812 Software Development
5.1 Introduction
Section 4 established the hardware that is necessary and how it will interact with the
ADuC812. This section will describe the development of the assembly code that the
ADuC812 interprets to perform tasks. It is clear that the Datalogger has three main tasks:

1. To acquire data by serial transmission and to set itself up from this data received

1. To acquire temperature at some fixed interval according to the way in, which it is
set up and store these temperatures recorded along with the time and date in,
which they were recorded into memory

1. To obtain the data store in memory at any time and transmit it serially.

From this, it is clear that the code will have three main subrountines used to control the
ADuC812. Figure 5-1 shows an overall view at the structure of the code and the main
subrountines in question. This section will describe more in depth how these main
subrountines are implemented, as well as other fragments of code necessary to allow the
overall Datalogger to operate properly.

5.2 Description of Main Code
The following descriptes the path in, which the program can take depending on the
information it receives from the serial port. This should be read in conjunction with the
flowchart in fig. 5-1. Note this is an overall view of the program. The exact coding
implementation used is described later in this section.

Main: The program starts of by initializing and clearing the LCD, setting

9600 baud for the UART, setting up the ADuC812 as an I2C
master, enabling the external interrupt and all other interrupts and
clearing all flags on the ADuC812. It then goes into the Waiting
subroutine.

Waiting: The Waiting subroutine continually polls the serial port (SBUF)
for a control word from the LoggerUI application. Once it receives
control byte from the serial port it is moved into the accumulator.
If the value in the accumulator is equal to AAh the program enters
the Data_Logged subroutines. Data_Logged subroutine is the
data-downloading mode where it obtains the data stored in
memory from the data loggings and sends them up the UART to
the LoggerUI application.

Stand-Alone Datalogger with GUI 26

Electronic & Computer Engineering ADuC812 Software Development

Next: If the value isn’t equal to AAh it jumps to the Next subroutine were
it tests the value with 55h. If it is equal the program enters
initialization mode were it sets up the current time on the Real
Time Clock the specific start time of data logging and the scanning
interval i.e. the period between two consecutive data loggings.
Once this is complete the program enters the Scan_Rate
subroutine (see fig. 5-12).

Warn: If the value isn’t equal to 55h it jumps to the Warn subroutine
were it loops continually flashing the LED to indicate that a
problem has occurred.

When the external interrupt is trigged at any stage during program execution the program

will jump to the Waiting subroutine and wait once again for a control byte from the

LoggerUI application. Normally this will only occur if the user wishes to cease the data

logging instead of waiting until the memory becomes full.

Stand-Alone Datalogger with GUI 27

Electronic & Computer Engineering ADuC812 Software Development

Fig. 5-1. Flow chart of the ADuC812 control
program. Three main procedures are
involved. The initialization procedure, the
data logging procedure and the downloading
procedure.

Stand-Alone Datalogger with GUI 28

Electronic & Computer Engineering ADuC812 Software Development

5.2 LCD Operation
A very popular standard exists that allows communication with vast majority of LCDs
regardless of their manufacture. The standard is referred to as HD44780U, which refers
to the controller chip that receives data from an external source (in this case, the
ADuC812) and communicates directly with LCD.

The 44780 standard requires three control lines as well as either four or eight I/O lines
for the data bus. In the Datalogger a 4-bit data bus is used, the LCD will require a total of
seven data lines (three control lines plus a four lines for the data bus), this gives the
Datalogger extra I/O pins if the Datalogger ever needed to be modified in the future to
add extra functionality or just adding user friendly features like LEDs or buzzers.

The three control lines are referred to as EN, RS, and RW.

The EN line is called “Enable”. This control line is used to tell the LCD that data is being
sent. To send data to the LCD, the program first sets this line high (1) and then sets the
other two control lines and puts data on the data bus. When other lines are completely
ready, EN is brought low (0) again. This 1-0 transition tells the 44780 to take the data
currently found on the other control lines and on the data bus and to treat it as a
command.

The RS line is the “Register Select” line. When RS is low (0), the data is to be treated as
a command or special instruction (such as clear the screen, position the cursor, etc.).
When RS is high (1), the data being sent is text data that should be displayed on the
screen. For example, to display the letter “T” on the screen you would set RS high.

The RW line is the “Read/Write” control line. When RW is low (0), the information on the
data bus is being written to the LCD. When RW is high (1), the program is effectively
querying (or reading) the LCD. Only one instruction (“Get LCD status”) is a read
command. All other are write commands – so RW will almost be low.

Finally, the data bus consists of four lines the only drawback of using 4-bits is that
commands and data have to be sent in two nibbles (4-bit parts) to the display, this takes
slightly more time. This won’t be a problem in the Datalogger. Since using 4-bit mode,
data bytes and command bytes are read and written in two separate ‘nibbles’ (4-bit parts),
therefore there are two subroutines one to read two nibbles from the LCD, and the other
to write two nibbles to the LCD. Furthermore, the toggling of the EN-line is also taken
care of in these subroutines, as you need to toggle for each nibble.

5.3.1 Program Variables
DB4: Equates to pin 4 on port 1

DB5: Equates to pin 5 on port 1

DB6: Equates to pin 6 on port 1

DB7: Equates to pin 7 on port 1

EN: Equates to pin 7 on port 3

Stand-Alone Datalogger with GUI 29

Electronic & Computer Engineering ADuC812 Software Development

RS: Equates to pin 6 on port 3

RW: Equates to pin 5 on port 3

DATA: Equates to port 1

5.3.2 Description of Code

The following describes how the LCD initializes itself and how it clears and writes
characters to the display. These descriptions should be read in conjunction with the
flowcharts in figures 5-2 to 5-7.

Initialization LCD: Set and clear the appreciate control lines (EN,RS and RW)

Send 28h to the LCD => 4-bit data bus, 5x8 dot character font and
two-line display

Send 0Eh to the LCD => Turn on LCD and the cursor
Send 06h to the LCD => Every time character received the cursor

position automatically moves to the right

Clear LCD: Set and clear the appreciate control lines (EN,RS and RW)

Send 01h to the LCD => Command used to clear the screen on
the LCD

The two above subroutines set up the LCD for when data becomes available and needs to
be displayed. These subroutines use other subroutines to achieve this.

Read_Nibble: Release datalines (set output latches to '1') so we can read the

LCD. Read the high nibble (4-bits) then read the low nibble and
combine the two together to form 8-bits and store in the
accumulator.

Write_Nibble: Push the accumulator (save the original byte) mask out the lower

4-bits and sent out the high nibble to the LCD. Pop the
accumulator (restore the original byte) mask out the upper 4-bits
and set out the lower nibble to the LCD.

Wait_LCD: Call Read_Nibble and check the most significant bit in the

accumulator. If the bit is set then the LCD is still busy so call
Wait_LCD again until the bit is clear indicating that the LCD is
ready and turn off RW for future commands to the LCD.

Write_Text: Call Write_Nibble and Wait_LCD.

Stand-Alone Datalogger with GUI 30

Electronic & Computer Engineering ADuC812 Software Development

Wait_LCD
(see fig

XX)

Write_2_Ni
bbles (see
fig XX)

Wait_LCD
(see fig

XX)

Mov 01h
into the

Acc

Wait_LCD
(see fig

XX)

Write_2_Ni
bbles (see
fig XX)

Mov 06h
into the

Acc

Write_2_Ni
bbles (see
fig XX)

Mov 0Eh
into the

Acc

Wait_LCD
(see fig

XX)

Write_2_Ni
bbles (see
fig XX)

Mov 28h
into the

Acc

Wait_LCD
(see

fig.XXX)

Mov 28h to
the LCD

Clr RW,
EN, RS

Return

Fig. 5-2. Shows the procedure that the ADuC812 has to perform at the
start of the main program in order to initialize the LCD. If this
subroutine isn’t called the LCD will not be able to display characters.

Stand-Alone Datalogger with GUI 31

Electronic & Computer Engineering ADuC812 Software Development

Fig. 5-3. Shows the Write_Nibble routine used
to write a single character to the LCD.

Fig. 5-4. Shows the Read_Nibble routine
used in the checking of the busy status of
the LCD.

Stand-Alone Datalogger with GUI 32

Electronic & Computer Engineering ADuC812 Software Development

 Fig. 5-5. This is the Write_Text rountine,
which is called when data in the Acc needs to
be displayed on the LCD.

 Fig. 5-6. This is the Wait_LCD routine,
which is used to determine if the LCD is
ready to receive another character.

Stand-Alone Datalogger with GUI 33

Electronic & Computer Engineering ADuC812 Software Development

5.4 Temperature Operation

The temperature sensor on the ADuC812 outputs a voltage that is inversely proportional
to the chip temperature. At 25oC, this voltage is approximately 600mV. As temperature
changes, the voltage changes by –3mV/oC. So an operating temperature rises, the
temperature sensor output voltage decreases. And of course the ADC is used to convert
the voltage on the temperature sensor to a digital value. It should be noted that the two
figures quoted above of 600mV @ 25 degrees and –3mV/oC are typical figures.

5.4.1 Description of Code

The following describes how the ADC on the ADuC812 is set up for a single conversion
and how the 16-bits obtained from the conversion is converted into a decimal value. This
description once again should be read in conjunction with the flowchart in fig. 5-7.

Configuration: The ADC is configured for normal mode, ADC clock divide bits is
set to four, ADC acquisition select bits is set to zero, timer mode
and external event bits disabled. The ADC interrupt bit is set.

ADC: Initiate a single AD conversion; the ADC Interrupt Service
Routine (ISR) is called upon completion, which calls
CONVERT_TEMP subroutine.

Convert_Temp: ADCDATAH/L are the registers that the ADuC812 stores the result
from an ADC. The upper 4-bits of the ADCDATAH indicate the
channel that the conversion was taken from, therefore they are of
no use and are masked out. These are combined with upper 4-bits
of the ADCDATAL and are stored in the accumulator as they are
more accurate that the lower 4-bits of the ADCDATAL. Before the
lower 4-bits of the ADCDATAL are masked out they are stored in
register three for future use.

 The value that is in the accumulator has a value of 58h subtracted
from it. This value is a value that has been calculated to
correspond to zero Celsius. Since the ADuC812 on board
temperature sensor is inverted, meaning that if the temperature
raises the value from the ADC becomes smaller. Unless the
temperature is zero Celsius the resulting subtraction will always
produce a minus answer e.g. 10 – 15 = -5. Therefore the sign bit
will always be set and from this the Convert_Temp subroutine
can take two different paths of execution, one to indicate that it is
above zero Celsius and other to indicate that it is below zero
Celsius.

Stand-Alone Datalogger with GUI 34

Electronic & Computer Engineering ADuC812 Software Development

Hundreds: The result from the subtraction is held in the accumulator and is
divided by 100. The accumulator receives the integer quotient and
B receives the remainder. If accumulator contains zero the
remainder that is in B is moved into accumulator otherwise
whatever value that is in the accumulator is stored in memory and
sent out to the LCD and then the value from B is moved into the
accumulator.

Tens: The value that is in the accumulator is now divided by 10. After
the second division the accumulator receives the integer quotient
once again and B receives the remainder. The value in the
accumulator is stored in memory and sent out to the LCD once
again.

Units: The remainder that is in B is moved into accumulator and is stored
in memory and sent out to the LCD. The value that is in register
three is now moved into the accumulator (the ordinary value from
ADCDATAL). The upper 4-bits are masked out and has Fh
subtracted from it. This is now divided by 10 and the value in the
accumulator is once again stored in memory and sent out to the
LCD. Before the result from the subtraction is stored in memory
and sent out to the LCD the value A5h is stored in memory and
also sent out to the LCD which represents ‘.’ character in ASCII.
Finally after the result from the subtraction the characters 0C are
stored in memory and sent out to the LCD.

Stand-Alone Datalogger with GUI 35

Electronic & Computer Engineering ADuC812 Software Development

 Fig. 5-7. This shows the procedure that the ADuC812 nees to perform in
order to convert the 16-bit value received from the ADC and convert it
into a decimal temperature value and store it in memory.

Stand-Alone Datalogger with GUI 36

Electronic & Computer Engineering ADuC812 Software Development

5.5 ADuC812 I2C Operation

The ADuC812 acts an I2C software master and is programmed to ‘bit bang’ the SDATA
and SCLOCK lines. Master mode is selected by setting the I2CM bit in the I2CCON
register on the ADuC812.

To transmit data on the SDATA line, the MDE bit must first be set to enable the output
driver on the SDATA pin. The MDO bit in the I2CCON register is the Data Out bit. The
output driver on the SDATA pin will either pull the SDATA line high or low depending on
whether the MDO bit is set or cleared.

The MCO bit in the I2CCON register is the clock output bit. The output driver on the
SCLOCK pin is always enabled in master mode and will either pull the SCLOCK line high
or low depending on the whether the bit MCO is set or cleared.

On the ADuC812 there is no pull-up on the SDATA/SCLOCK output driver hence
external pull-ups are implemented to pull this line high. To receive data, the MDE bit
must be cleared to disable the output driver on SDATA. The software is used to toggle the
MCO bit (send out a clock pulse) and read the status of the SDATA line via the MDI bit.
The MDI bit is set if SDATA is high and cleared if SDATA is low (provided MDE is
cleared). The software must also control the MDO, MCO and MDE bits appropriately to
generate the START condition, slave address, acknowledge bits, data bytes and STOP
conditions appropriately. The data is latched into MDI on a rising edge SCLOCK only if
MDE is cleared.

5.5.1 Program Variables
SLAVEADDH: SLAVEADDH holds the high byte address of the slave.

SLAVEADDL: SLAVEADDL holds the low byte address of the slave.

OUTPUT: Output holds the value to be transmitted to the slave.

INPUT: Input is the value received from the slave. This value is sent out the UART.

NOACK: This is set if a NACK is received when an ACK is expected.

ERR: The ERR flag is set if the NOACK is set anywhere in the program and
allows the NOACK flag to be cleared in the software.

Stand-Alone Datalogger with GUI 37

Electronic & Computer Engineering ADuC812 Software Development

5.5.2 Description of Code
The following description should be read in conjunction with the main flowcharts in fig.
5-8 and fig. 5-9 and also the two separate flowcharts for RCVDATA and SENDDATA
in fig. 5-10 and fig. 5-11.

When the Datalogger is in data logging mode the program sends the START condition,
the slave control byte, R/W bit (cleared to indicate a transmission) to the slave and the
slave high and low address bytes. The ADuC812 transmits eight bytes to the slave (year,
month, day, hour, minute, second and temperature recorded). After the transmission of
each byte it examines the ACK which indicates to the ADuC812 that the slave has
received the last byte and when all eight bytes are transmitted the ADuC812 sends the
STOP condition.

When the Datalogger enters data-downloading mode the ADuC812 program sends the
START condition, the slave control byte, the R/W bit (cleared to indicate a transmission)
to the slave and the slave high and low address bytes. After the word address is sent, the
ADuC812 generates a START condition following the ACK from the slave. This
terminates the write operation, but not before the internal address pointer is set in the
slave. Then the ADuC812 issues the control byte again but with the R/W bit set to initiate
a master-reception to the slave. The ADuC812 then receives a single byte from the slave
and sends back a ACK and the STOP condition. The ACK indicates to the slave that the
master has received the last byte to be transmitted by the slave. The ADuC812 then
transmits the received byte up the UART to the PC where it is used by the LoggerUI
application. The master program jumps back to the start and receives another byte from
the slave again.

Configuration: The UART is configured for 9600 baud.

Initialization: The I2C registers and flags are initialized.

I2CCON = A8h => Master Mode

Disables the output driver on SDATA

SCLOCK float high

OUTPUT = 0 Initial byte to be transmitted is ‘0’.

Note: Since the I2C interface is in master mode there is no need to enable
the I2C interrupt, or put a value into I2CADD.

Transmission: Transmission of a byte is done as follows (see SENDDATA fig. 5-11)

1. Send the START bit.

2. Send the Slave control byte (manipulated with R/W bit clear for
reception).

3. Send the Slave high and low byte addresses.

4. Check the ACK.

Stand-Alone Datalogger with GUI 38

Electronic & Computer Engineering ADuC812 Software Development

5. If an NACK is received send a STOP bit and set the ERR flag.

6. If an ACK is received then send 64 clocks to the slave device. With
each clock the MDO bit in I2CCON should be loaded with the
appropriate value from the data byte in the accumulator reading the
MDI bit after each clock is transmitted.

7. Check the ACK.

8. If a NACK is received then set the ERR flag.

9. Send STOP bit.

Reception: Reception of a byte is done as follows (see RCVDATA figure 7a)

1. Send the START bit.

2. Send the Slave control byte (manipulated with R/W bit clear for
reception).

3. Send the Slave high and low byte addresses.

4. Check the ACK.

5. If an NACK is received send a STOP bit and set the ERR flag.

6. Send the START bit.

7. Send the Slave control byte (manipulated with R/W bit set for
reception).

8. If an ACK is received then send 8 clocks to the slave device reading
the MDI bit after each clock is transmitted. After 8 clocks the received
byte is saved in the accumulator.

9. Send NACK to indicate that this is the last byte to be received.

10. Send STOP bit.

11. If a NACK is received then set the ERR flag.

Check ERR: Check the ERR flag to see if an error occurred. If an error occurred send
an error message up the UART to the PC.

Delay: This delay (approx five machine cycles) is only used to slow the program
down and give the slave time.

Stand-Alone Datalogger with GUI 39

Electronic & Computer Engineering ADuC812 Software Development

Fig. 5-9. Shows the procedure the ADuC812
performs when it wishes to write data to the
memory chip during data logging mode.

Fig. 5-8. Shows the procedure the ADuC812
performs when it wishes to obtain data from
the memory chip during download mode.

Stand-Alone Datalogger with GUI 40

Electronic & Computer Engineering ADuC812 Software Development

Stand-Alone Datalogger with GUI

 Fig. 5-10. RCVDATA subroutine used to
obtain data from memory chip
Fig. 5-11. SENDDATA subroutine used to
send data from memory chip
 41

Electronic & Computer Engineering ADuC812 Software Development

5.6 Scan Interval Loop Operation
This scan interval loop is basically a large delay depending on the value that was received
on intialisation. One way to approach this is to develop a software real time clock,
though this involved some calculations e.g. overflow, frequency of the Timer and also
involved using some interrupts.

Instead, since there is a delay of 100 milli-seconds being used on the LCD code this was
used and was called ten consecutive times producing a delay of one second. This
produces the building blocks of the scan interval loop.

5.6.1 Program Variables
TICKS: This holds the number of time the Delay subroutine has to be

executed.

DELAYSEC: This is the number of seconds that have passed.

SCANRATE: This holds the scanning interval - i.e. the period between two
consecutive data loggings. This value obtained during
initialization.

MINUTES: This is the number of minutes that have passes

5.6.2 Description of Code
The following description should be read in conjunction with the flowchart in fig 5-12

Scan_Rate: This subroutine determines when an AD conversion should be
called. On entry to the Scan_Rate subroutine the Delay
subroutine is called. The Delay subroutine is a subroutine that
delays for 100 milli-seconds. Once the Delay subroutine is
completed the TICKS variable is decremented. If TICKS variable
is decremented to zero then the TICKS variable is reset to its
default value of 10 and the DELAYSEC variable is incremented
indicating that one second has passed, otherwise it loops back to
the Delay subroutine. Therefore every time TICKS decrements to
zero the DELAYSEC variable is incremented by one.
DELAYSEC is then checked against the value 60 to see if a
minute has passed if so the MINUTES variable is incremented by
one. The MINUTES variable is then checked against the
SCANRATE variable and once these match an AD conversion is
called. Once the AD conversion is completed it checks to see if
memory is full on the Logger. If memory is full the program
jumps to the Waiting subroutine (see fig. 5-1) otherwise it enters
the Scan_Rate subroutine once again. When any of the checks fail
the Delay subroutine is called.

Stand-Alone Datalogger with GUI 42

Electronic & Computer Engineering ADuC812 Software Development

Fig. 5-12. Shows the flowchart of the
Scan Interval Loop. SCANRATE value
is defined on initialization by the user.

Stand-Alone Datalogger with GUI 43

Electronic & Computer Engineering ADuC812 Software Development

5.7 Real Time Clock Operation
The Real Time Clock is connected to port 0 of the ADuC812 and interacts by using
synchronous serial communication. All data transfers are initiated by driving the RST
input high. The RST input serves two functions. First, it turns on the control logic,
which allows access to the shift register for the address/command sequence. Second the
RST signal provides a method of terminating either single byte or multiple byte data
transfer.

5.7.1 Program Variables
RST: Equates to pin 7 on port 0

IO: Equates to pin 5 on port 0

SCLK: Equates to pin 3 on port 0

CENABLE: This preset value starts the Real Time Clock

WENABLE: This is a preset value that write enables the Real Time Clock

WSECOND: This is a preset value that enables writing to the seconds register

RSECOND: This is a preset value that enables reading from the seconds
register

WMINUTE: This is a preset value that enables writing to the minutes register

RMINUTE: This is a preset value that enables reading from the minutes
register

WHOUR: This is a preset value that enables writing to the hour register

RHOUR: This is a preset value that enables reading from the hour register

WDAY: This is a preset value that enables writing to the day register

RDAY: This is a preset value that enables reading from the day register

WMONTH: This is a preset value that enables writing to the month register

RMONTH: This is a preset value that enables reading from the month register

WYEAR: This is a preset value that enables writing to the year register

RYEAR: This is a preset value that enables reading from the year register

WCONTROL: This is a present value that enables writing to the control register

RCONTROL: This is a present value that enables reading from the control
register

WCB: This is a present value that enables writing to the Real Time Clock
in burst mode.

RCB: This is a present value that enables reading from the Real Time
Clock in burst mode.

Stand-Alone Datalogger with GUI 44

Electronic & Computer Engineering ADuC812 Software Development

5.7.2 Description of Code

The following describes the sysnchronous serial communication between the ADuC812
and the Real Time Clock and should be read in conjunction with the flowcharts in figures
5-13 to 5-15.

RTC_Setup: This subroutine sets up the current time on the Real Time Clock
according to the values that were sent down from the LoggerUI
application. It gets these values from the memory locations that
they were stored during initialization. Before it does this it sends
out the WCONTROL value to the Real Time Clock through the
Write_RTC subroutine, which disables the write protection
register and allows the Real Time Clock to be written to. After this
it sequentially sends out WYEAR value followed by the value that
was sent down from the LoggerUI application for the year value
which is written into the year register on the Real Time Clock, next
it sends out the WMONTH value followed by the month value to
be written into the month register and so on until all the registers
are set up. Next, it enables the write protection register on Real
Time Clock and starts the Real Time Clock by sending out the
CENABLE byte.

Write_RTC: This sets the reset pin on the Real Time Clock high which allows
all data transfers to be initiated. Once the reset pin on the Real
Time Clock is low all data transfers are terminated and the IO pin
goes high impedance state. It then sends out the byte in the
accumulator bit by bit to the Real Time Clock. This is done by
clearing and setting the SCLK pin.

Read_RTC: This does exactly the same as the Write_RTC subroutine only that
It calls a different routine to set and clear the SCLK pin. This
routine first sets the SCLK pin and then clears it as opposed to
clearing and then setting it. This is done because data inputs must
be valid during the rising edge of the clock and data bits are output
on the falling edge of the clock. The bits obtained from the Real
Time Clock are read into the accumulator and are then stored in
memory.

_

Stand-Alone Datalogger with GUI 45

Electronic & Computer Engineering ADuC812 Software Development

Clear RST, SCLK

and I/O pins.
Delay

Clear RST, SCLK
and I/O pins.

Delay

Set RST high

Keep a count of
eight

 Set RST high
Keep a count of

eight

Y

Decrement
count

Count = 0?

N

Move bit out to I/O pin
Clear SCLK.

Set SCLK high

Decrement
count

Count = 0?

N

Move bit from I/O pin
to the Acc

Set SCLK high
Clear SCLK.

Clear RS T
Return

 Y

Clear RS T

Return

 Fig. 5-13. This is the routine used by the

ADuC812 to send a byte to the Real Time
Clock, i.e. setting up the time of the Real
Time Clock

Fig. 5-14. This is the routine used by the
ADuC812 to read a byte from the Real
Time Clock, i.e. obtaining the time of the
Real Time Clock.
Note the differences between the setting
and clearing of the SCLK with fig. 5-13

Stand-Alone Datalogger with GUI 46

Electronic & Computer Engineering ADuC812 Software Development

Move

WCONTROL
into the Acc

Call Write_RTC
(see fig 5-13)

Move the 00H
into the Acc

Call Write_RTC
(see fig. 5-13)

Move the present
value into Acc

Call Write_RTC
(see fig. 5-13)

Move the
date/time value

into the Acc

Return

N

Is RTC
time/date
set up?

Call Write_RTC
(see fig. 5-13)

Y

Fig. 5-15. This is the procedure that the ADuC812 has to perform in order to set
up the time and date on the Real Time Clock. This routine executes until all the
registers on the Real Time Clock are written to. There are eight registers in all to
write to in order to set up the time and date on the Real Time Clock.

Stand-Alone Datalogger with GUI 47

Electronic & Computer Engineering Temperature Operation

6. Java Software Development
6.1 Introduction
Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder. You must find pertinent objects, factor them into classes at the
right granularity, define class interfaces and inheritance hierarchies, and establish key
relationships among them. The design should to be specific to the problem at hand but
also general enough to address future problems and requirements. You want to avoid
redesign, or at least minimize it.

Design patterns help designers get a design “right” faster. Design patterns make it easier
to reuse successful designs and architecture. Expressing proven techniques as design
patterns make them more accessible to developers of new systems. Design patterns help
choose design alternatives that make a system reusable and avoid alternatives that
compromise reusability. Design patterns can even improve the documentation and
maintenance of existing systems by furnishing an explicit specification of class and
object interactions and their underlying intent.

6.1.1 What is a Design Pattern?
In general, a pattern has four essential elements:

1. The pattern name is a handle you can use to describe a design problem, its
solutions, and consequences in a word or two. Naming a pattern immediately
increases the design vocabulary. Having a vocabulary for patterns lets you to talk
about them to other people, in the documentation and even yourself. It makes it
easier to think about designs and t communicate them and their trade-offs to
others.

2. The problem describes when to apply the pattern. It explains the problem and its
context. It might describe specific design problems such as how to represent
algorithms as objects. It might describe class or object structures that are
symptomatic of an inflexible design.

3. The solution describes the elements that make up the design, their relationships,
responsibilities and collaborations. The solution doesn’t describe a particular
concrete design or implementation, because a pattern is like a template that can be
applied in many different situations. Instead, the pattern provides an abstract
description of a design problem and how a general arrangement of elements
solves it.

4. The consequences are the results and trade-offs of applying the pattern. The
consequences for software often concern space and time trade-offs. They may
address language and implementation issues as well. Since reuse is often a factor
in object-oriented design, the consequences of a pattern include its impact on a
system’s flexibility, extensibility or portability.

`

Stand-Alone Datalogger with GUI 48

Electronic & Computer Engineering Temperature Operation

6.2 LoggerUI Application
In the development of the LoggerUI application a number of Design patterns have been
used. The patterns that have been used are classified as Creational, Structural and
Behavioral Patterns. From the Creational Patterns the Abstract Factory, Singleton and
Prototype are used for object creation and the Factory method is used for class creation.

The Structural Pattern, Decorator is used for object structural and the Template method is
used from the Behavioral Pattern for class behavioral. The following is a description of
the patterns used:

Abstract Factory: Provides an interface for creating families of related or dependent
objects without specifying their concrete classes.

Factor Method: Define an interface for creating an object, but let subclasses decide
which class to instantiate. Factory method lets a class defer instantiation to subclasses.

Singleton: Ensure a class only has one instance, and provide a global point of access to
it.

Prototype Method: Specify the kinds of objects to create using a prototypical instance
and create new objects by copying this prototype.

Decorator: Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.

The host computer controls the Datalogger through the LoggerUI application that has
been designed and developed in Java. Also the link code that is used to communicate to
the serial port and in return communicates to the ADuC812 microcontroller on the
Datalogger is also done in Java.

The following is the specifications of the LoggerUI application and the link code that is
needed in order for it to interact with the Datalogger correctly.

6.2.1 Specifications
 The user must be able to set the start date and time of data logging and the

scanning interval i.e. the period between two consecutive temperature samples,
though the LoggerUI application.

 If a date or time value is exceed then the system should produce an error e.g. you
can’t have 8 days in the week or 70 minutes in an hour.

 The code must convert the date and time into byte form in order for the ADuC812
to recognise it. It must also send the current time and date to the ADuC812 in
order for it to count down to the start date and time.

 The user must be able to select a serial port of his/her choice and may initialize
the Datalogger or download data from the Datalogger though that COM port that
they have selected. This includes setting the buffer sizes, the baud rate etc. If the

Stand-Alone Datalogger with GUI 49

Electronic & Computer Engineering Temperature Operation

serial port that is selected is in use by another application on the host computer an
error should be displayed to the user telling them so.

 The LoggerUI application must be able to allow the user to download data from
the Datalogger to the host computer by providing the user with the option of
choosing the file path and file name for which they want to store their data.

 Data stored must be in text format and should include at the start of the file the
start time and date of downloading, start time and date of which the logging
mission started, the scanning interval that was chosen and the total number of
temperatures recorded.

 The LoggerUI application will provide user with the option of viewing the
temperature samples in graph form, with the option of printing them if the user
wishes to.

 In addition to the above specification, addional features will be incorporated into
the LoggerUI application that will make it more user friendly to the end user.
These included help files, system check, system set-up and about forms.

6.2.2 Dataflow Diagrams

Fig 6-1. Top level Dataflow diagram
showing the users input to select an
action and displaying the action
selected by the user

Fig. 6-2. The intial level 1 Dataflow diagram, indicating that there is a choice between
what type of action is activated. Either a sub-dialog box is loaded to the screen or there
is a process chosen, that is either initialize or download data with the necessary
information being displayed to the screen.

Stand-Alone Datalogger with GUI 50

Electronic & Computer Engineering Temperature Operation

Fig. 6-3. The complete level 1 Dataflow diagram has been refined as much as possible. It shows that
the user has the option of displaying four sub-dialog boxes to the screen, with the help dialog being
able to provide the user with the choice of diplaying certain help files to the screen. The initialization
process obtains data from the time and date store that has already been tested before being stored in
this file. In the actual system this is not so but this is doe in order to make the Dataflow diagram
earier to read and also simplifies the diagram. The file path and file name are both required to store
the datadownloaded and an error is generated if either is missing.

Stand-Alone Datalogger with GUI 51

Electronic & Computer Engineering Temperature Operation

6.2.3 Class Diagram

Fig. 6-4. Shows the class diagram of the LoggerUI application’s superclasses, which all the framework derives of

Stand-Alone Datalogger with GUI 52

Electronic & Computer Engineering Temperature Operation

6.2.4 LoggerUIs Superclsses
LoggerObject is an abstract class and implements the Abstract factory pattern
providing most of the framework for domain-level objects in LoggerUI.
LoggerObject defines some of the behaviour for domain-level Logger objects. The
primary behaviour a LoggerObject provides is the ability to display an aspect of itself
as a user-interface (LoggerObjectUI) using the method:

displayAspect(aspect : LoggerObjectAspect) : LoggerObjectUI

LoggerObject's may support various aspects (LoggerObjectAspect) but all objects
must at LEAST support a default aspect (LoggerObjectAspect.DEFAULT).
LoggerObject provides a simple implementation of displayAspect, which
returns a LoggerObjectUI that display’s, the LoggerObject's toString() method in as
a JLabel.
A LoggerObject may be asked to close itself. When a LoggerObject is closed in
this way, all its open LoggerObjectUIs will also be told to close themselves.

Subclasses of LoggerObject must override certain methods of LoggerObject.
Subclasses must override the public static method getTypeAspects. This method
returns as Set of LoggerObjectAspects that represent the aspects that instances of the
subclass may display.
The LoggerObject Aspect class implements the prototype pattern. A LoggerObject
creates a prototypical instance for each supported Aspect. In most cases the prototype
aspect is all that is needed. However if you want to associate instance specific
information that has a particular aspect then the prototype should be cloned before adding
the instance specific information. An example of this would be a warning message
Aspect that contains run time information in the warning message.
Subclasses should also override the createUIForAspect method. This method used
to return the LoggerObjectUI appropriate for displaying a particular aspect of the
object.

LoggerObjectUI (UI) is one of the LoggerUI Framework classes and also
implements the Abstract factory pattern. Its role in the framework is to provide a
graphical representation of a specific aspect of a framework object. This class should be
subclassed for each aspect that a framework object wants to make visible to a user.
Subclasses of LoggerObjectUI should provide a constructor, which takes an instance
of the object whose aspect the UI is displaying.

public ResultAreaUI(ResultArea object) {
 super(object);
}

The subclass should override the getAspect()method to return the actual aspect that
this ui is displaying.

Stand-Alone Datalogger with GUI 53

Electronic & Computer Engineering Temperature Operation

The subclass should completely override the createComponent() method. The
implementation of this method should create the graphical component required to display
the appropriate aspect of the underlying object.

protected Component createComponent() {
 JPanel result;
 result = new JPanel;
 result.add(new JLabel(getShortDisplayName()));
 result.add(new JLabel(getFooProperty()));
 return result;
}
(Note: LoggerObjectUI provides a default implementation of
createComponent() which returns a JLabel displaying the toString() method
of its object. The subclass may also override the createActions() method. The
implementation of this method should contain a call to addAction(action) for
every Action that this UI supports.

protected void createActions() {
 addAction(getFooAction());
 addAction(getBarAction());
}

Any action sites added in this way are automatically handled by the framework (i.e. they
are installed/uninstalled in external ActionSites as required).

6.2.5 LoggerUIs Framework Details
LoggerObjectUIs are created by a LoggerObject in response to a
displayAspect(aspect) message. This is an Abstract factory method,
subclasses implement this method and create appropriate LoggerObjectUI subclasses.
Any subclass of LoggerObject can be asked to display an aspect and the caller doesn’t
have t care what concrete subclass of LoggerObjectUI is created. The LoggerObject
is responsible
for working out which particular LoggerObjectUI to instantiate for the given aspect.

UIs provide a graphical representation of the object's aspect as an AWT
Component. The installation of a UI in a LoggerObjectUIManager (through the
installUI (ui) method see fig. 6-5) usually causes the UI's component to be
displayed. The object is responsible for finding an appropriate UI manager and for
calling the installUI(ui) method. This all happens in LoggerObject's
displayAspect(aspect) method.

A UI maintains a collection of Action objects, which perform some operation against
the UI or underlying object. Subclasses initialise the collection of actions by calling
addAction(action) in the createActions()method. A UI may make these
actions available through its own graphical representation but will more commonly make
them available through an external ActionSite (e.g.: a menu bar or

Stand-Alone Datalogger with GUI 54

Electronic & Computer Engineering Temperature Operation

toolbar). A UI may be associated with zero or more ActionSites through the
addActionSite method. When a UI is activated it automatically installs any actions it
knows about into its ActionSites and when it is deactivated, those actions are uninstalled
from its ActionSites. UIs do not need to be told explicitly about ActionSites, the
framework handles this automatically through the UI manager.
The LoggerObjectUIManager manages LoggerObjectUIs and is (usually)
responsible for displaying them in some sort of UI container.

Fig. 6-5. Shows the sequence diagram of the template method that all LoggerObjects call
when they want to display an aspect of themselves. This particular sequence diagram is the
Logger object displaying an aspect of itself – the LoggerFrameworkAspectUI. This creates
the LoggerMenu and LoggerToolbar respectively and installs whatever actions are
available to itself at that time. The result of this is shown in fig. 6-6.

Stand-Alone Datalogger with GUI 55

Electronic & Computer Engineering Temperature Operation

Fig. 6-6. This is the end result from calling the displayAspect on the Logger class. From the screen
shot above the menu bar and toolbar are both visible and so is the status bar (bottom of the
application with the default text set to “Ready”). The area above this is called the result area were
some of the exception are displayed if they should occur. Above that area is the work area. When the
user performs a new project action or opens an existing project this is were the Work Area and Plot
Area tabs are placed. Note that the only actions that are available to the user at this stage on the
toolbar, is to open an existing project or display the help dialog box.

Stand-Alone Datalogger with GUI 56

Electronic & Computer Engineering Temperature Operation

6.3 Design by Contract
Design by contract is a design technique developed by Bertrand Meyer. At the heart of
Design by Contract is the assertion. An assertion is a Boolean statement that should
never be false and, therefore only false because of a bug. Typically, assertions are
checked only during debug and are not checked during production execution. Indeed, a
program should never assume that assertions are being checked.

Design by Contract uses three kinds of assertions: pre-condition, post-condition and
invariants. Within the LoggerUI application only the pre/post conditions are used
although there is a function for invariants.

Pre-conditions and post-conditions apply to operations. A post-condition is a statement
of what the world should look like after the execution of an operation. The post-
condition is a useful way of saying what we do without saying how we do it, in other
words, of separating interface from implementation.

A pre-condition is a statement of how we expect the world to be before we execute an
operation. We might define a pre-condition for a “square” operation of this>=0. Such
a pre-condition says that it is an error to invoke “square” on a negative number and that
the consequences of doing so are undefined.

On first glance, this seems a bad idea, because we should put some check somewhere to
ensure that “square” is invoked properly. The important question who is responsible for
doing so.

The pre-condition makes it explicit that the caller is responsible for checking. Without
this explicit statement of responsibilities, you can get either too little checking (because
both parities assume that the other is responsible) or too much (both parties check). Too
much checking is a bad thing, because it leads to lots of duplicate checking code, which
can significantly increase the complexity of a program. Being explicit about who is
responsible helps to reduce this complexity. The danger that the caller forgets to check is
reduced by the fact that assertions are usually checked during debugging and testing.

From these definitions of pre-condition and post-condition, you can see a strong
definition of the term exception, which occurs when an operation is invoked with its pre-
condition satisfied, yet cannot return with its post condition satisfied.

One of the dangers of polymorphism is that you could redefine a subclass’s operation to
be inconsistent with the superclass’s operations. The post-conditions must apply to all
subclasses. The subclasses can choose to strengthen these, but they cannot weaken them.
The pre-condition, on the other hand, cannot be strengthened but may be weakened.

This looks odd at first, but it is import to allow dynamic binding. You should always be
able to treat the subclass object as if it were an instance of the superclass (pre the
principle of substitutability). If a subclass strengthened its pre-condition, then a
superclass operation could fail when applied to the subclass. Pre-conditions are a
statement of passing a responsibility on to the caller; you increase the responsibilities of a
class by weakening a pre-condition. In practice, all of this allows much better control of
subclassing and helps to ensure that subclasses behave properly. Pre-conditions often
give the best chances of catching errors for the least amount of processing overhead.

Stand-Alone Datalogger with GUI 57

Electronic & Computer Engineering Temperature Operation

Design by Contract is a valuable technique that should be used whenever you program. It
is particular helpful in building clear interfaces.

6.3.1 LoggerUncheckedException

From this technique I developed a two classes called LoggerUncheckedException
and Contract. The class definition for LoggerUncheckedException is that this
class allows you to set the message in the exceptions that were being thrown. Overriding
the getMessage method does this. There are three constructors in
theLoggerUncheckedException class but all take a String exceptionType,
which identifies the exception type thrown. The other constructors allow exceptions to
be created from the exception resource bundle.

Contract defines two exception types PreconditionFailureException and
PostconditionFailureException which are subclasses of
LoggerUncheckedException. The exceptions define their own exception types
(“PreconditionFailureException” and “PostconditionFailureException” respectively) and
their Detail is set by whatever you put in the call to Contract.Precondition or
Contract.Postcondition.

Another class developed was the Message class. This class is used to generate error
messages, be they exceptions, warnings or expected conditions. The class reads the text
from a file, the correct message is found using a key. Parameters are then substituted in
this message to build the context sensitive message.

The sequence diagram in fig. 6-7 shows the interactions if an exception occurred in the
LoggerUI application. Object1 (for example) calls the displayAspect method,
which starts to get its pre-conditions through the static Contract.Precondition
method. This method takes a String message and a boolean condition. In this
instance the condition is false therefore, a PreconditionException is thrown
with the message as its parameter. This then calls the constructor of its superclass
(LoggerUncheckedException) which creates a new Message object and
substitutes the necessary parameters into a message using the setParam method.

Once again depending on the constructor called the message could be generated from the
exception resource bundle but for this sequence diagram the exceptionType and
exceptionDetails are hard coded.

The Contract.Precondition and Contract.Postcondition are
mostly used in the framework classes when the framework wants to make an aspect
object visible to a user. The other place that the LoggerUncheckedException is
used is in the initialisation of the serial port with the exceptions being thrown/displayed
in the result area of the LoggerUI application.

Stand-Alone Datalogger with GUI 58

Electronic & Computer Engineering Temperature Operation

 Fig. 6-7. Shows the sequence diagram of a pre-condition exception been thrown within
the LoggerUI application. As stated in the diagram this will occur if the Boolean
expression is equal to false.

Stand-Alone Datalogger with GUI 59

Electronic & Computer Engineering Temperature Operation

6.4 ActionSite
This section will very briefly explain the ActionSite and its role in installing actions
into the LoggerUI application. Also, the creation of the LoggerMenu will be described,
through a sequence diagram. The LoggerToolbar is not explained as it is created in
the exact same manner as the menu, in that implements the ActionSite abstract class
and the contents is read from the application's property file.

The ActionSite is an abstract class that allows a list of active actions to be registered
with it. The active actions are installed in an action site. Menus and toolbars extend the
ActionSite class. The ActionSite provides context specific actions to these sites.
The contents of a site (menubar, toolbar) don't change, however the active actions vary
depending on the context e.g. an Undo menu item has different behavior (action)
depending on what's active (diagram, work area).

6.4.1 LoggerMenu
Normally creating a menu or a menu item is straightforward enough, the only reason for
it being explained is that most examples hard code the names of the menu items. This is
fine but it isn’t very flexible if the menu or the toolbar had to be changed, or if the
LoggerUI application had to be used by user of a different language. This is why the
contents of the menu bar are read from the LoggerUI application’s property file. In this
sense if the menu bar or the toolbar had to be updated in the future the only changes
would need to be made to the property file and not the LoggerMenu or the
LoggerToolbar for that matter. The same gos if it needed to be put into a different
language a new property file would have to be created the LoggerMenu would not need
to be reworked. This is a technique known as internationalization.

The Decorator pattern is implement on the AppResource by the
AppResourceDecorator class. This provides a flexible alternative to subclassing
for extending functionality. The AppResourceDecorator forwards requests to the
AppResource after it has attached the appropriate suffixes used to look information up
in the property files using a resource bundle. On creation of the LoggerMenu the
method setMenuItemProperties calls the getLablStr method which ends up
calling the getStringforkey method on the AppResourceDecorator. This
attaches the appropriate suffix to the string passed in and then this calls the
getStringForKey method on AppReource which receives the string from the
resource bundle that matches the sting being passed, see fig. 6-8.

The same approach is used then to retrieve the image, tool tip description , mnemonic and
the accelerator key for that menu item. This then repeated for all menu items that were
ordinary retrieved from the resource bundle (LoggerUI applications property file).

Stand-Alone Datalogger with GUI 60

Electronic & Computer Engineering Temperature Operation

Stand-Alone Datalogger with GUI 61

Fig. 6-8. Shows the sequence diagram for creating the menu bar within the LoggerUI
application. The items that need to be added to the menu bar are obtained from the
LoggerUI application property file.

Electronic & Computer Engineering Temperature Operation

6.5 Logger Check
This Logger check interface is used to give the user information such as when was the
last time data was downloaded from the Datalogger and when was the last time the
Datalogger was initialised including the scan rate that was selected for the period
between two consecutive data loggings.

The reason I choose to put this interface into the LoggerUI application was that this
project has the capability of measuring temperature over a long period of time depending
on the scan rate that was selected by the user. Therefore if the Datalogger were placed in
a remote place that is not easily accessibly then the user would only wish to retrieve it
when he/she is sure that the memory is nearly full as it wouldn’t be convenient for them
otherwise. So for this reason I decided to add this to the LoggerUI application so that
when the user loads up a previous project it will tell the user when he/she last
downloaded data or when he/she last initialised the system, and from this they could
calculate when the on board memory of the Datalogger is near its full capacity and
therefore retrieve it from its location.

The interface provides no other functionality it is a user feature that has been
incorporated into the LoggerUI application.

However in designing this form absolute positioning was used as this is faster than using
any of the swing layout managers that are in a sense pretty limited in laying out
graphically component. Absolute positioning is were you give the component the exact x
and y coordinate which corresponds to the top left hand corner of that component and
you also specify the width and height of the component.

Stand-Alone Datalogger with GUI

Table 6-1. The following line of code is how the
components are placed in their respective places
using absolute positioning. The first two
parameters represent the x and y coordinates of
the component and the last two parameters
represent the width and height of the
component.

_launchTime.setBounds(new
Rectangle(25, 52, 150, 27));
Fig. 6-9. Screen shot of the Logger check
when loaded by the LoggerUI application
to the screen.
 62

Electronic & Computer Engineering Temperature Operation

6.6 Logger Setup
This Logger Setup interface is used to tell the user what the specifications of the
Datalogger are in that it tells the user what microcontroller is used, what type of input is
used on the Datalogger i.e. analogue or digital, how many inputs are there on the
Datalogger, what its memory capacity is and how many records can be stored in the
memory, this would be depending on the input used. In the case of the my Datalogger
which uses an analogue input with a 12-bit analogue-to-digital converter which means
that every record recorded would take up two bytes within the memory (excluding the
time stamp), if the analogue-to-digital was changed to a 8-bit then each record recorded
would take up one byte within memory and therefore double the number of records
would be able to be stored in memory (excluding the time stamp) but they wouldn’t be as
actuate as the 12-bit analogue-to-digital converter.

It informs the user what type of features are on the Datalogger to tell them if the
Datalogger is initialised properly or if a record has been recorded, such as an LED
flashing indicates the control byte received is invalid or a LCD indicating what the
current mode of the Datalogger is. The interface also indicates what type of transmission
speed the overall system is set up for such as 9600 bits per second.
The only recommendation I would make for this interface is that if this project ever
happen to be mass produced and the LoggerUI application happen to remain basically the
same but there were different types of Dataloggers produced i.e. different types of
microcontrollers used, multiple inputs, etc then every time the LoggerUI application was
loaded up and the Datalogger was connected to the COM port for downloading data, the
Datalogger would have its details permanent stored in its on board memory so when it
starts downloading data it would first send its details which would update the form letting
the user know what type of Datalogger they were using and they would then be able to
determine if the Datalogger was compatible with the software they were using so they
could initialise the Datalogger.

Fig. 6-10. Screen shot of the Logger Setup
interface when loaded to the screen by the
LoggerUI application.

Stand-Alone Datalogger with GUI 63

Electronic & Computer Engineering Temperature Operation

6.7 Serial Port Introduction
One of the major functionalities of the LoggerUI application is its ability to communicate
with the serial port(s) on the host computer. With out this ability the LoggerUI
application is of no real use as it can neither initialize nor download data from the
Datalogger. The JDK doesn’t provide functionality to support this, but Java does have an
extension package called Java communication API.
The Java communications API, is a standard extension to the Java platform. Like all Java
standard extensions, the Java communications API is intended to be implementable from
specification by third parties.

6.7.1 javax.comm extension package

There are three levels of classes in the Java communications API:

 High-level classes like CommPortIdentifier and CommPort manage access
and ownership of communication ports.

 Low-level classes like SerialPort and ParallelPort provide an interface to
physical communications ports. The current release of the Java communications API
enables access to serial (RS-232) and parallel (IEEE 1284) ports.

 Driver-level classes provide an interface between the low-level classes and the
underlying operating system. Driver-level classes are part of the implementation
but not the Java communications API. Application programmers should not use
them.

The javax.comm extension package provides the following basic services:

 Enumerate the available ports on the system. The static method
CommPortIdentifier.getPortIdentifiers returns an enumeration
object that contains a CommPortIdentifier object for each available port.
This CommPortIdentifier object is the central mechanism for controlling
access to a communications port.

 Open and claim ownership of communications ports by using the high level
methods in their CommPortIdentifier objects.

 Resolve port ownership contention between multiple Java applications. Events are
propagated to notify interested applications of ownership contention and allow the
port's owner to relinquish ownership. PortInUseException is thrown when
an application fails to open the port.

 Perform asynchronous and synchronous I/O on communications ports. Low-level
classes like SerialPort and ParallelPort have methods for managing I/O
on communications ports.

 Receive events describing communication port state changes. For example, when
a serial port has a state change for Carrier Detect, Ring Indicator, DTR, etc. the

Stand-Alone Datalogger with GUI 64

Electronic & Computer Engineering Temperature Operation

SerialPort object propagates a SerialPortEvent that describes the state change.
java.lang.Object

 |

 +----javax.comm.CommPortIdentifier

public class CommPortIdentifier

extends Object

Communications port management. CommPortIdentifier is the central class for
controlling access to communications ports. It includes methods for:

 Determining the communications ports made available by the driver.

 Opening communications ports for I/O operations.

 Determining port ownership.

 Resolving port ownership contention.

 Managing events that indicate changes in port ownership status.

The LoggerUI application first uses methods in CommPortIdentifier to negotiate
with the driver to discover which communication ports are available and then select a port
for opening. It then uses methods in the class SerialPort to communicate through the
port selected.

java.lang.Object

 |

 +----javax.comm.CommPort

 |

 +----javax.comm.SerialPort

public abstract class SerialPort

extends CommPort

An RS-232 serial communications port. SerialPort describes the low-level interface
to a serial communications port made available by the underlying system. SerialPort
defines the minimum required functionality for serial communications ports.

Stand-Alone Datalogger with GUI 65

Electronic & Computer Engineering Temperature Operation

6.7.2 InitialisePort

When the user opens a new project the workarea panel constructs a drop down menu
(JComboBox) that contains all the available Serial ports available on the underlying host
computer. If user now wants to either initialize or download data from the Datalogger all
they have to do is connect the Datalogger to the desired serial port on the host computer
and select that port from the drop down menu and hit either the initialization or download
button, depending on their required need.

The state diagram in fig. 6-11 describes the behavior of the InitialisePort object
as it sets up the port for either initialization or data downloading. Once the
openPort() action is performed the Port Open state is entered into. This checks to see
that no other port is opened by the LoggerUI application, i.e. if the user was initializing
the Datalogger and accidentally hit the download button. On the LoggerUI application an
error will be thrown to the result area because the isOpen flag is set to true by the
initialization action. If this check passes then the openConnection() action is
performed and the InitialisePort object enters into Open Port state and the
isOpen flag is set to true. Here, the LoggerUI application checks to see if the port
selected to open exists on the host computer. If it doesn’t the NoSuchPort exception is
throw to the result area. However, this will never occur in the LoggerUI application as
whatever ports that are available on the host computer are the only ones added to the drop
down menu. Once it has checked the port selected the InitialisePort object still
stays in the Open Port state but it now try’s to open and claim ownership of the serial port
that is selected. This is done by notifying interested applications of ownership
contention and allows the port's owner to relinquish ownership. If the owner doesn’t
relinquish ownership after 30 seconds then the PortInUseException is thrown when the
LoggerUI application fails to open the port.

If the port is opened successfully then the setConnectionParameters() action is
performed and the InitialisePort object enters the PortSetup state. In this state the
LoggerUI application sets up the selected port to the desired parameters i.e. 9600 baud,
no parity, 8 data bits and one stop bit. These are standard enough settings for most serial
ports so there won’t be a problem but if there is an UnSupportedParameter will be
thrown indicating to the user which parameter that is selected is unsupported in the host
computer. Again this will not happen in the LoggerUI application, as the user hasn’t the
option to select the ports parameters, they are hard coded into the SerialParameters
class. Once the parameters are set up sucessfully the InitialisePort object will
either have openInputStream() or openOutputstream() action performed on
it, depending on what action the user has performed i.e. initialization or download data.

The openOutputstream() opens the output stream of the serial port selected to
allow the initialisation data to be sent out to the Datalogger.

The openInputstream() opens the input stream of the serial port selected to allow
data being sent by the Datalogger to be received asynchronously by the LoggerUI
application and to be stored in a text file. When both of these actions are completed they
both close the serial port that was opened and set the InitialisePort object back to
its ordinary state by setting the isOpen flag to false.

Stand-Alone Datalogger with GUI 66

Electronic & Computer Engineering Temperature Operation

This code snippet below finds the serial ports available on the host computer and assigns
them to the drop down menu.

/**
 * Sets the elements for the portChoice from the ports available on the
 * system. Uses an emuneration of comm ports returned by
 * CommPortIdentifier.getPortIdentifiers.
 */
 public void listPortChoices() {
 _comPorts = new JComboBox();
 _comPorts.addItemListener(this);
 CommPortIdentifier portId;

 Enumeration en = CommPortIdentifier.getPortIdentifiers();

 // iterate through the ports.
 while (en.hasMoreElements()) {
 portId = (CommPortIdentifier) en.nextElement();
 if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL) {
 comPorts.addItem(portId.getName());
 }
 }
 }

Fig. 6-11. Shows the state diagram for the InitialisePort class. The openPort() action is
invoked by the user either pressing the Initialisation or Download button on the Work Area
of the LoggerUI application.

Stand-Alone Datalogger with GUI 67

Electronic & Computer Engineering Temperature Operation

6.8 Graph Introduction
Once the Datalogger has obtained it’s temperature recordings over a period of time and
the LoggerUI application has downloaded these recordings to the host computer’s hard-
drive, or were ever the user has specific for the results to be stored, they can now be
analyzed. However, this information is stored in a text file and there could up to 8000
temperatures recordings. This would make it very tedious to read through these results
and to find were any major changes in temperature occurred over that period of time. For
this reason a graph was implemented into the LoggerUI application to make life easier for
the user and to be able to see at a glance were any major changes in temperature
occurred.

Unfortunately, the Java JDK doesn’t come with any specific graph elements, but with a
little pixel twiddling a graph component can be created. This requires manual drawing,
therefore the Canvas class is subclassed. This is the standard component that provides
direct graphics manipulation. The technique used is to override the paint method of
Canvas with the custom drawing that is required. The Graphics object is used,
which is automatically passed into the paint method of all components, to access colors
and drawing methods.

6.8.1 LoggerLineGraphUI

To create the LoggerLineGraphUI class, Canvas was subclassed. A font could
have been specified and the pixel measurements hard-coded in, but the user would be
unable to resize the graph. A better approach is to measure the elements against the
current size of the component, so that resizing the application will result in a correct
resizing of the graph.

The constructor takes a String title, an int minimum value, and an int maximum
value. This gives the information needed to layout the framework. Four variables are kept
-- the _top, _bottom, _left, and _right values for the borders of the graph-
drawing region. These variables are used to calculate positioning of graph items.

import java.awt.*;
import java.util.*;

public class LoggerLineGraphUI extends Canvas {

 // variables needed
 private int _top;
 private int _bottom;
 private int _left;
 private int _right;
 private int _titleHeight;
 private int _labelWidth;
 private int increment;
 private int position;
 private FontMetrics _fm;
 private int _padding = 4;
 private String _title;

Stand-Alone Datalogger with GUI 68

Electronic & Computer Engineering Temperature Operation

 private int _min;
 private int _max;
 private Vector _items;

To calculate the correct placement of graph elements, first need to calculate the regions in
our LoggerLineGraphUI layout that make up the framework. To improve the
appearance of the component, a 4-pixel padding is added to the outer edges. The _title is
added and centered at the top, taking into account the padding area. To make sure that the
graph is not drawn on top of the text, the height of the text is subtracted from the _title
region. The same is done for the _min and _max value range labels. The width of this
text is stored in the variable _labelWidth. A reference to the font metrics is needed
in order to do the measurements. The items vector is used to keep track of all the
individual items that have been added to the LoggerLineGraphUI component. A
class used to hold variables related to graph items is included (and explained) after the
LoggerLineGraphUI class.

 public LoggerLineGraphUI(String title, int min, int max) {
 this._title = title;
 this._min = min;
 this._max = max;
 _items = new Vector();
 } // end constructor

The constructor takes the graph title and the range of values, and creates an empty vector
for the individual graph items.

6.8.1.1 The Overridden reshape method
public void reshape(int x, int y, int width, int height) {
 super.reshape(x, y,width, height);
 _fm = getFontMetrics(getFont());
 _titleHeight = _fm.getHeight();
 _labelWidth = Math.max(_fm.stringWidth(new
 Integer(_min).toString()),
 _fm.stringWidth(new Integer(_max).toString())) + 2;
 _top = _padding + _titleHeight;
 _bottom = size().height - _padding;
 _left = _padding + _labelWidth;
 _right = size().width - _padding;
} // end reshape

Note: In JDK 1.1, the reshape method is replaced with public void
setBounds(Rectangle r). See the API documentation for details.

The reshape method is overridden; this is inherited down the chain from the
Component class. The reshape method is called when the component is resized
and when it is laid out the first time. This method is used to collect measurements, so that
they will always be updated if the component is resized. The font metrics are obtained
for the current font and assigned to the _titleHeight variable the maximum height

Stand-Alone Datalogger with GUI 69

Electronic & Computer Engineering Temperature Operation

of that font. The maximum width of the labels is obtained, testing to see which one is
bigger and then using that one. The _top, _bottom, _left, and _right variables
are calculated from the other variables and represent the borders of the center graph-
drawing region. Note that all of the measurements take into account a current size of the
component so that redrawing will be correct at any size or aspect. If hard-coded values
are used, the component could not be resized.

6.8.1.2 The Overridden paint method
public void paint(Graphics g) {
 // draw the title
 _fm = getFontMetrics(getFont());
 g.drawString(_title, (size().width - _fm.stringWidth(_title))/2,
 _top);
 // draw the max and min values
 g.drawString(new Integer(_min).toString(), _padding, _bottom);
 g.drawString(new Integer(_max).toString(), _padding, _top +
 _titleHeight);
 // draw the vertical and horizontal lines
 g.drawLine(_left, _top, _left, _bottom);
 g.drawLine(_left, _bottom, _right, _bottom);
} //end paint

The framework is drawn in the paint method. The _title and labels are drawn in their
appropriate places. A vertical line is drawn at the left border of the graph-drawing region,
and a horizontal line at the bottom border.

In this next snippet we set the preferred size for the component by overriding the
preferredSize method. The preferredSize method is also inherited from the
Component class. Components can specify a preferred size and a minimum size. I
have chosen a preferred width of 925 and a preferred height of 450. The layout manager
will call this method when it lays out the component.
public Dimension preferredSize() {
 return(new Dimension(925, 450));
 }

} // end LoggerLineGraphUI

Note: In JDK 1.1, the preferredSize method is replaced with public
Dimension getPreferredSize()

6.8.1.3 Adding and Removing item to be graphed
 public void addItem(String name, int value, Color col) {
 items.addElement(new GraphItem(name, value, col));
 } // end addItem

 public void addItem(String name, int value) {
 items.addElement(new GraphItem(name, value, Color.black));
 } // end addItem

Stand-Alone Datalogger with GUI 70

Electronic & Computer Engineering Temperature Operation

 public void removeItem(String name) {
 for (int i = 0; i < items.size(); i++) {
 if (((GraphItem)items.elementAt(i)).title.equals(name))
 items.removeElementAt(i);
 }
 } // end removeItem

} // end LoggerLineGraphUI

The addItem and removeItem methods after similar methods in the Choice
class, so the code will have a familiar feel. Notice that two addItem methods are used;
this allows items to be added with or without a color. When an item is added, a new
GraphItem object is created and added to the items vector. When an item is removed,
the first one in the vector with that name will be removed.

6.8.2 GraphItem Class

The GraphItem class is very simple; here is the code:

import java.awt.*;

class GraphItem {

 String title;
 int value;
 Color color;

 public GraphItem(String title, int value, Color color) {
 this._title = title;
 this._value = value;
 this._color = color;
 } // end constructor
} // end GraphItem

The GraphItem class acts as a holder for the variables relating to graph items. This
strategy is quite convenient; don't have to go to the trouble of measuring the pixels for the
framework again, and focus on filling in the graph drawing region.

6.8.2.1 Plotting the GraphItems
Since the items need to be spaced evenly a _increment variable is used to indicate the
amount to shift to the right for each item. The _position variable is the current
position, and the _increment variable is added to it each time.

 public void paint(Graphics g) {
 // The code from the above snippet is here first
 increment = (right - left)/(items.size() - 1);
 position = left;
 Color temp = g.getColor();
 GraphItem firstItem = (GraphItem)items.firstElement();

Stand-Alone Datalogger with GUI 71

Electronic & Computer Engineering Temperature Operation

 int firstAdjustedValue = bottom - (((firstItem.value -
 min)*(bottom - top))/(max - min));
 g.setColor(firstItem.color);
 g.drawString(firstItem.title, position –
 fm.stringWidth(firstItem.title), firstAdjustedValue - 2);

g.fillOval(position - 2, firstAdjustedValue - 2, 4, 4);
 g.setColor(temp);
 for (int i = 0; i < items.size() - 1; i++) {

 GraphItem thisItem = (GraphItem)items.elementAt(i);
 int thisAdjustedValue = bottom - (((thisItem.value - min)*
 (bottom - top))/(max - min));
 GraphItem nextItem = (GraphItem)items.elementAt(i+1);
 int nextAdjustedValue = bottom - (((nextItem.value - min)*
 (bottom - top))/(max - min));
 g.drawLine(position, thisAdjustedValue,
 position+=increment, nextAdjustedValue);
 g.setColor(nextItem.color);
 if (nextAdjustedValue < thisAdjustedValue)
 g.drawString(nextItem.title, position –

 fm.stringWidth(nextItem.title),nextAdjustedValue
 + titleHeight + 4);

 else
 g.drawString(nextItem.title, position -
 fm.stringWidth(nextItem.title),nextAdjustedValue - 4);
 g.fillOval(position - 2, nextAdjustedValue - 2, 4, 4);
 g.setColor(temp);
}

 } // end paint

First the framework is drawn, then the custom graph drawing is implement. The value of
the increment is found by measuring the difference between the left and right edges
of the graph region and then by dividing the result by the number of elements minus 1.
This formula will produce the correct increment value. Because there may be colors
associated with the graph items, the original color is kept in a temp variable, then set the
color to be the first item's color. A small circle is drawn and the name of the first item in
the correct position. The color is set back to its original color.

In the for loop, the correct pixel values are found of the current and next element in the
vector, adjusted for the actual size of the component. A reference is needed for the
current and next item so that connecting lines can be drawn.

The next value is checked to see if it is less than the current value to decide where to
draw the label. If the line will go up, the label is drawn under the point, and if the line
will go down, the label is drawn above the point. This technique ensures that the lines
won't cross the labels.

Stand-Alone Datalogger with GUI 72

Electronic & Computer Engineering Temperature Operation

Fig. 6-12. Shows the screen shot of the line graph plotted in the Plot Area tab after the temperatures have
been downloadedfrom the Datalogger.

Fig. 6-13. Shows a screen shot of the LoggerUI application after the user has initialized the Datalogger.
Note the message being displayed in the Result Area telling the user that the Datalogger is initialized.
Also the logger Initialization and Download panels, which are displayed in the Work Area tab.

Stand-Alone Datalogger with GUI 73

Electronic & Computer Engineering Problems Encountered

7. Problems Encountered
Like most projects or even things that take time to organize over a period of time they
never or very rarely go smoothly. This project is no exception to this, but it can be put
down to mistakes done and lessons learn. From this, some of the procedures that have
been taken in the duration of this project if it was to be done again from scratch there
would be things that would be certainly changed.

In this section of the report, some of the problems that have been encountered during the
project will be documented. These problems have either hindered the project in the sense
of time or even in the functionality. It will be broken into two parts; one dealing with the
ADuC812 development and the interaction with the other hardware components that
made up the Datalogger. The other section will describe the problems that were
encountered during the development of the LoggerUI application.

7.1 ADuC812 Problems Encountered
One of the problems that resisted through out the project and at the start when the spec
was being drawn up it seemed straight forward enough. This was the analogue-to-digital
conversion. Getting the ADuC812 to perform an analogue-to-digital conversion wasn’t
the problem. The problem was that once the conversion a done two-byte value respented
the current temperature. Since it was inverted didn’t make life any easier, but trying to
convert it into a decimal value and store it in memory was the hassle. A lookup table
could have been used but this very efficient as was found out. Also trying to calculate
what zero Celsius corresponded to on the chip was another problem but was eventually
over come. This was a more time consuming problem but it was one that was overcome.

 The next problem ended up affecting the functionality of the project. This problem was
to do with the I2C bus. This problem was the biggest disappointment of the project if
there is one. The problem was that you could see the ADuC812 sent out the necessary
control word to the memory chip and receive an acknowledge back from the memory
chip. It then sent out the high and low byte address of were to write to in the memory
chip and got another acknowledge back and finally sent out the necessary data to the
memory chip. But, the memory chip would never acknowledge the data being sent and
from this it would never be written into the memory of the chip. I spent a lot of time
trying to figure out what was causing the problem but to no avail.

Other problems encountered in the development of the ADuC812 software were the
interrupts and CALL and JMP statements. Using any of the Timers for the Scan Interval
delay wasn’t possible since an analogue-to-digital conversion was interrupt based and so
was the overflow of each of the Timers. The CALL and JMP statements ended up
causing a problem in the main method of the ADuC812 code. It was more of a
programming error on my part were I was using a CALL statement instead of a JMP
statement. The difference being that a CALL statement needs a RET (return) statement to
jump back to were it has been called from. A JMP doesn’t, you jump to the required
location and the program executes sequentially from there. This error caused the
ADuC812 to jump back to main (start of the program) when the memory was full

Stand-Alone Datalogger with GUI 74

Electronic & Computer Engineering Problems Encountered

instead of jumping to were it was supposed to wait for the control word to start
downloading the data logged.

7.3 Java Problems Encountered
The first problem encountered in the development of the LoggerUI application was the
resource bundle. The problem was that JBuilder (the developing package that was used
to write the .java files) wasn’t placing the Logger.property file in the resource
folder in the source output. Therefore every time the program ran it looked in the source
output path for the resource folder, which contained the .property file, which didn’t
exist, and therefore one of the Pre-conditions was being thrown, indicating that there was
an unexpected exception. Once this problem was fixed the menu and toolbar could be
created and hence the LoggerUI application created.

From here most of the development involved using Java swing components and in
particular the GridBagLayout manager which is the most flexible layout managers in
swing but also one of the most difficult to work with as most of the time it has a mind of
its own and places components in locations that you haven’t specified. This manager was
used in the layout of the Logger Initialization and Download panels. Using this manager
is more of a case of trial and error.

When it came to the stage to start implementing the operations of the serial port a
problem was encounter that resulted in the LoggerUI application no being platform
independent anymore i.e. working on Windows and UNIX operating systems. The
problem is due to the fact that Window additions above 95 don’t allow easy access to the
serial ports of the underlying system. There is a work around this problem, which means
instanitaineing an object called a Win32Driver, which is found in com.sun.comm.
*. Once this object is created an initialize method has to be called on it. This
method doesn’t take any parameters. Once this is done the ports on the underlying
system become available to the user.

Serial Port alos introducted another problem in the download of data from the
Datalogger. The problem is that the LoggerUI application reads in data asynchronously
from the serial port and this is event triggered. Therefore, this operates on a separate
thread of execution that the one that calls the download data action. This resulted in the
LoggerUI application only reading in one byte of data and then closing the port.
Therefore to overcome this problem a delay of a minute was introduced into the code
before actual close port action was executed. This fixed the problem but it isn’t a very
efficient way of doing it but since time wasn’t allowing me to research more appropriate
methods of overcoming this problem this was the only solution.

.

Stand-Alone Datalogger with GUI 75

Electronic & Computer Engineering Conclusion

8. Conclusion
In the early part of this report, the background technologies outlined how this project
would be developed. The central part of this report has been concerned with how these
technologies were implemented in achieving the aims and the objectives that were set out
in the early part of this report also.

The overall goal was to develop a device that was dedicated to measuring temperatures
over a period of time and that wasn’t large in size. The system developed in section 4
achieved this goal. It was compact in size consumed little power and its only function
was to acquire temperature.

I am quite happy with the outcome of this project. On the microcontroller end of the
project i.e. ADuC812 most of if not all, the aims have been met for it. The only real let
down on this wasn’t been able to talk to the external memory chip over the I2C bus. But
if anything could come out of this was that I seen that the code that had been
implemented was sending out the right signals over I2C bus as they could be seen on the
oscilloscope. ADuC812 was however, capable of reading temperatures storing them in
memory, taking a time stamp an also storing it in memory (the ADuC812 internal
memory) and was able to communicate with the host computer through the serial port for
both initialization and data downloading.

On the Graphical User Interface all of the aims were achieved an even a few additional
features but not all were added into the interface. It is capable of initializing and
downloading data from the Datalogger through the serial port. It can represent the data
retrieved from the Datalogger in a line graph and also save the data to a file on the host
computer of were ever the user specifies. Additional features that were able to be
implemented were saving each new initialization and downloading of data as new
projects.

If time had permitted the zoom and cut and paste functionality could have been
implemented. As with many projects it is sometimes difficult to know when to stop
improving and modifying the design but here is a few improvements that could make the
overall system better as a whole.

 The communication between the host computer and the Datalogger could use
wireless communication. This would involve using Radio Packet Controllers
(RPC) that are able to both transmit and receive data over wireless
communication link. One of the controllers would be connected to the serial port
of the host computer and the other would be on the Datalogger board. This
means that the LoggerUI application would still communicate to the serial port of
the host computer but the need for the cable between it and the Datalogger
wouldn’t be necessary.

 An observer pattern could have been implemented in the design for checking the
constraints of a date select by the user. The way in which it works at the moment
is that the date isn’t checked until the user try’s to initialize the Datalogger. The
runValidator method is called which checks the constraints of the date
selected. If an observer pattern were implemented then if the date selected was
inaccurate an error message would inform the user in the usual way (message

Stand-Alone Datalogger with GUI 78

Electronic & Computer Engineering Conclusion

being displayed in the Result Area) but if the user changed the date then the
message would instantly disappear. The way in which it is done at the moment is
the constraint is only checked when the user hits the initialization button on the
Logger initialization panel in the Work Area.

This project was quite large in size than originally anticipated, with the final
LoggerUI application having over 50 classes. Overall I am happy with what has
been achieved. This project has been challenging, interesting and most of all a
valuable experience in the domain of both Java and microcontroller programming.

Stand-Alone Datalogger with GUI 79

Electronic & Computer Engineering Appendix A

 Appendix A : ADuC812 Control Register Settings

 Table A-1. ADCCON1 SFR Bit Designations

Table A-2. ADCCON2 SFR Bit Designations

Stand-Alone Datalogger with GUI 80

Electronic & Computer Engineering Appendix A

ADC Control Register
#1

Description Status

ADCCON1.7 ADC power control bits 1
ADCCON1.6 (SHTDN, NORM, AUTOSHTDN, AUTOSTBY) 0
ADCCON1.5 Conversion time =16/ADCCLK 1
ADCCON1.4 ADCCLK = MCLK/[1, 2, 4, 8] 0
ADCCON1.3 Acquisition time select bits 0
ADCCON1.2 ACQ time = [1, 2, 3, 4] / ADCCLK 0
ADCCON1.1 Timer2 convert enable 0
ADCCON1.0 External CONVST enable 0

ADC Control Register
#2

Description Status

ADC1 ADC interrupt flag 0
DMA DMA mode enable 0

CCONV Continuous conversion mode 0
SCONV Single conversion start bit 1

CS3 Input channel select bits 1
CS2 0000 – 0001 = ADC0-ADC7 0
CS1 1XXX = temperature sensor 0
CS0 1111 = “halt” command (in DMA mode only) 0

The tables above show the configurations that the ADCCON1 and ADCCON2 SFRs are set to in
the Datalogger.

Stand-Alone Datalogger with GUI 81

Electronic & Computer Engineering Appendix A

A-1 ADuC812 TMOD, TCON & SCON Register Settings

 Table A-3. TMOD SFR Bit Designations

Table A-4. TCON SFR Bit Designations

Stand-Alone Datalogger with GUI 82

Electronic & Computer Engineering Appendix A

 Table A-5. SCON SFR Bit Designations

 Fig. A-1. Shows the UART Timing in Shift Register Mode

Stand-Alone Datalogger with GUI 83

Electronic & Computer Engineering Appendix A

Timer/ Counter 0 & 1
Mode Register

Description Status

Gate Timer 1 Gating Control 0
C/T Timer 1 Timer or Counter Select Bit 0
M1 Timer 1 Mode Select Bit 1 (Used with Mo Bit) 1
M0 Timer 1 Mode Select Bit 0 0
Gate Timer 0 Gating Control 0
C/T Timer 0 Timer or Counter Select Bit 0
M1 Timer 0 Mode Select Bit 1 (Used with Mo Bit) 0
M0 Timer 0 Mode Select Bit 0 0

Timer/ Counter 0 & 1
Control Register

Description Status

TF1 Timer 1 Overflow Flag 0
TR1 Timer 1 Run Control Flag 1
TF0 Timer 0 Overflow Flag 0
TR0 Timer 0 Run Control Flag 0
IE1 External Interrupt 1 Flag 0
IT1 External Interrupt 1 Trigger Type 0
IE0 External Interrupt 0 Flag 0
IT0 External Interrupt 0 Trigger Type 1

UART Serial Port
Control Register

Description Status

SM0 UART Serial Mode Select Bits 0
SM1 Serial Port Operating Mode 1
SM2 Multiprocessor Communication Enable Bit 0
REN Serial Port Receive Enable Bit 1
TB8 Serial Port Transmit Bit 9 0
RB8 Serial Port Receive Bit 9 0
TI Serial Port Transmit Interrupt Flag 0
R1 Serial Port Receive Interrupt Flag 0

 The tables above show the configurations that the TMON, TCON and SCON SFRs are set to in
the Datalogger.

Stand-Alone Datalogger with GUI 84

Electronic & Computer Engineering Appendix A

A-2 I2C Implementation on the ADuC812

This section describes the I2C implementation on the ADuC812. The ADuC812provides
both hardware and software master operating modes. Three SFRs are used to control the
I2C interface.

I2CADD: Holds the 7-bit address of the MicroConverter device (default value =
55H). This SFR is only used in slave mode.

I2CDAT: In slave-receiver mode the received data from the SDATA line is latched
into this SFR. Hence, after a successful reception the received data can be
read from this SFR. E.g.

 MOV A, I2CDAT

 reads the received data into the accumlator. In slave transmitter mode a
write to this SFR will make the data available for transmission on the
SDATA line under control of the master. E.g.

 MOV I2CDAT, #60h

 writes 60h out to the SDATA line when clocked by the master.

Note: For the ADuC812, a write or a read of the I2CDAT SFR automatically
clears the I2CI interrup flag. Clearing this flag for a second time will
cause the I2C controller to get ‘lost’. For the ADuC812 the I2CI
interrupt flag must be cleared in software.

I2CCON: Holds configuration/control bits for master/slave mode operation.

Stand-Alone Datalogger with GUI 85

Electronic & Computer Engineering Appendix A

Bit
Mneumonic

Description

MDO Software Master Data Out Bit (MASTER ONLY)
This bit is used to implement a master I2C interface transmitter in
software. Data written to this bit will be outputted on the SDATA pin if
the data output enable (MDE) is set.

MDE Software Master Data Out Enable Bit (MASTER ONLY)
This bit is used to implement a master I2C interface in software. Setting
this bit enable the SDATA pin as an output (TX). Clearing this bit
enables SDATA as an input (RX)

MCO Software Master Clock Out Bit (MASTER ONLY)
This bit is used to implement a master I2C receiver interface in software.
Data written to MCO will be outputted on the SCLOCK pin.

MDI Software Master Data In Bit
This bit is used to implement a master I2C receiver interface in software.
The data on the SDATA pin is latched in here on SCLOCK if data output
enable (MDE) is clear.

I2CM I2C Mode Bit
Setting this bit enables software master mode, clearing this bit enables
hardware slave mode.

I2CRS I2C Serial Port Reset (SLAVE ONLY)
Setting this bit will cause a reset of the I2C interface

I2CTX I2C Transmission Direction Status (SLAVE ONLY)
This bit indicates the direction of transfer. The bit is set if the master is
reading from the slave. This bit is cleared if the master is writing data to
the slave. This bit is automatically loaded with the R/W bit after the
slave address and start condition.

I2CI I2C Interrupt Flag (SLAVE ONLY)
This is the interrupt flag for the I2C serial port. This bit is set after a byte
has been transmitted or received. It must be cleared in software.

Table A-6: Bit Definition of I2CCON

Stand-Alone Datalogger with GUI 86

Electronic & Computer Engineering Appendix A

 Fig. A-2. Shows the I2C-Compatible Interface Timing

I2C Control
Register

Description Status

MDO Software Master Data Out Bit (MASTER ONLY) 1
MDE Software Master Data Out Enable Bit (MASTER ONLY) 0
MCO Software Master Clock Out Bit (MASTER ONLY) 1
MDI Software Master Data In Bit (MASTER ONLY) 0
I2CM I2C Mode Bit 1
I2CRS I2C Serial Port Reset (SLAVE ONLY) 0
I2CTX I2C Transmission Direction Status (SLAVE ONLY) 0
I2CI I2C Interrupt Flag (SLAVE ONLY) 0

The table above show the configurations that the I2CCON SFRs are set to in the Datalogger.

Stand-Alone Datalogger with GUI 87

Electronic & Computer Engineering Appendix B

Appendix B : ADuC812 Code
;**
;
; Author: Paul Boyle 4th Yr NUI Galway, Electronic & Computer Engineering
;
; Date: 05 Apr 2002
;
; File: demo2.asm
;
; Hardware: ADuC812
; HD66100 (Hitachi LCD)
; MICROCHIP 24LC64 64K EEPROM
; DALLAS DS1302 REAL TIME CLOCK
;
; Description : Reads a temperature from the internal temperature sensor of the
; ADuC812 and stores the temperature in internal memory along with
; a time stamp taken from RTC. The program will continue this
; until either memory is full or the user presses the INT0 button
; on the development board were the program will wait to send the
; data logged up the UART to the LoggerUI application.
; Each temperature recorded is displayed on the LCD in 4-bit mode,
; therefore all commands and data have to be sent in two nibbles
; (4bit parts) to the display.
; The value stored in SCANRATE is the number minutes between each
; temperature value that is sampled.
;
;**
; EQUATES
;**

 $MOD812

 DB4 EQU P2.4
 DB5 EQU P2.5
 DB6 EQU P2.6
 DB7 EQU P2.7
 EN EQU P3.7
 RW EQU P3.6
 RS EQU P3.5
 LCD_DATA EQU P2

 RST EQU P0.7
 IO EQU P0.5
 SCLK EQU P0.3

 LED EQU P3.4 ; P3.4 is red LED on eval board

 CENABLE DATA 055h ; Clock Start
 YEARVAL EQU 018h
 MONTHVAL EQU 019h
 DATEVAL EQU 01Ah
 HOURVAL EQU 01Bh
 MINUTEVAL EQU 01Ch

 IOYEAR EQU EQU 01Dh
 IOMONTH EQU 01Eh
 IODATE EQU EQU 01Fh
 IOHOUR EQU EQU 020h
 IOMINUTE EQU 021h
 SCANRATE EQU 022h ; Scan Rate variable
 AMPM EQU IOHOUR.5 ; 0 = AM, 1 = PM
 TMODE EQU IOHOUR.7 ; 0 = 24, 1 = 12

 WENABLE DATA 00h
 WSECOND DATA 080h
 RSECOND DATA 081h
 WMINUTE DATA 082h
 RMINUTE DATA 083h

Stand-Alone Datalogger with GUI 88

Electronic & Computer Engineering Appendix B

 WHOUR DATA 084h
 RHOUR DATA 085h
 WDAY DATA 086h
 RDAY DATA 087h
 WMONTH DATA 088h
 RMONTH DATA 089h
 WYEAR DATA 08Ch
 RYEAR DATA 08Dh
 WCONTROL DATA 08Eh
 RCONTROL DATA 08Fh
 WCB DATA 0BEh ; Write Clock Burst
 RCB DATA 0BFh ; Read Clock Burst

 DELAYSEC EQU 07Dh ; Second variable
 TICKS EQU 07Eh ; 20th of a second countdown timer
 MINUTES EQU 07Fh ; Minute variable

 ORG 0000h
 JMP MAIN

 ORG 03h
 PUSH PSW
 MOV R1, #036h
 MOV DELAYSEC, #59
 MOV A, SCANRATE
 SUBB A, #01h
 MOV MINUTES, A
 POP PSW
 RETI

 ORG 0033h ; ADC ISR
 RETI

;**
; READ TWO NIBBLES FROM THE LCD
;**

 READ_2_NIBBLES:

 ORL LCD_DATA,#0F0h ; Be sure to release datalines (set outputlatches
 ; to '1') so we can read the LCD
 SETB EN
 MOV A,LCD_DATA ; Read first part of the return value (high nibble)
 CLR EN
 ANL A,#0F0h ; Only high nibble is usable
 PUSH ACC
 SETB EN
 MOV A,LCD_DATA ; Read second part of the return value (low nibble)
 CLR EN
 ANL A,#0F0h ; Only high nibble is usable
 SWAP A ; Last received is actually low nibble
 MOV R7,A
 POP ACC
 ORL A,R7 ; And combine it with low nibble
 RET

;***
; WRITE TWO NIBBLES TO THE LCD
;***

 WRITE_2_NIBBLES:

 PUSH ACC ; Save A for low nibble
 ;ORL LCD_DATA,#0F0h ; Bits 4..7 <- 1
 ANL A,#0F0h ; Don't affect bits 0-3
 MOV LCD_DATA,A ; High nibble to display
 SETB EN
 CLR EN

Stand-Alone Datalogger with GUI 89

Electronic & Computer Engineering Appendix B

 POP ACC ; Prepare to send
 SWAP A ; ...second nibble
 ;ORL LCD_DATA,#0F0h ; Bits 4...7 <- 1
 ANL A,#0F0h ; Don't affect bits 0...3
 MOV LCD_DATA,A ; Low nibble to display
 SETB EN
 CLR EN
 RET

;**
; CHECKING THE BUSY STATUS OF THE LCD
;**

 WAIT_LCD:

 CLR RS ; It's a command
 SETB RW ; It's a read command
 LCALL READ_2_NIBBLES ; Take two nibbles from LCD in A
 JB ACC.7,WAIT_LCD ; If bit 7 high, LCD still busy
 CLR RW ; Turn off RW for future commands
 RET

;**
; INITIALIZING THE LCD
;**

 INIT_LCD:

 CLR RS
 CLR RW
 CLR EN
 SETB EN
 MOV LCD_DATA,#28h
 CLR EN
 LCALL WAIT_LCD
 MOV A,#28h
 LCALL WRITE_2_NIBBLES ; Write A as two separate nibbles to LCD
 LCALL WAIT_LCD
 MOV A,#0Eh
 LCALL WRITE_2_NIBBLES
 LCALL WAIT_LCD
 MOV A,#06h
 LCALL WRITE_2_NIBBLES
 LCALL WAIT_LCD
 RET

;**
; CLEARING THE DISPLAY
;**

 CLEAR_LCD:

 CLR RS
 MOV A,#01h
 LCALL WRITE_2_NIBBLES
 LCALL WAIT_LCD
 RET

;**
; WRITING TEXT TO THE LCD
;**

 WRITE_TEXT:

 SETB RS
 LCALL WRITE_2_NIBBLES

Stand-Alone Datalogger with GUI 90

Electronic & Computer Engineering Appendix B

 LCALL WAIT_LCD
 RET

;**
; TEXT TO BE WRITTEN TO THE LCD
;**

 INIT:
 DB 'INITIALISING...'
 DB 000h

 DOWN:
 DB 'DOWNLOADING...'
 DB 000h

 WAIT:
 DB 'WAITING...'
 DB 000h

 ERROR:
 DB 'ERROR!!!'
 DB 000h

 TITLE: DB 'Demo Program by Paul Boyle'
 DB 000h

;**
; DELAY
;**

 DELAY: ; delay 100ms

 MOV R7,#200 ; 200 * 500us = 100ms

 DLY1:
 MOV R6,#229 ; 229 * 2.17us = 500us
 DJNZ R6,$; sit here for 500us
 DJNZ R7,DLY1 ; repeat 200 times (100ms delay)
 RET

;**
; CONVERT TEMPERATURE
;**

 CONVERT_TEMP:

 MOV ADCCON1,#060h ; power up ADC
 MOV ADCCON2,#8h ; select channel to convert
 ;SETB EA ; enable interrupts
 SETB EADC ; enable ADC interrupt

 LCALL DELAY
 SETB SCONV ; innitiate single ADC conversion
 ; ADC ISR is called upon completion
 LCALL DELAY
 MOV A, ADCDATAh
 ANL A, #00Fh
 SWAP A
 MOV R2,A
 MOV R3, ADCDATAL
 MOV A, ADCDATAL
 ANL A, #0F0h
 SWAP A
 ORL A, R2
 CLR C
 SUBB A, #58H ; convert to 2's comp
 ; 54h=0, FFh=+171, 00h=-54

Stand-Alone Datalogger with GUI 91

Electronic & Computer Engineering Appendix B

 SENDDECs: ; SENDs the signed decimal number in Acc to the LCD
 ; -54->171
 PUSH B
 PUSH ACC
 JBC ACC.7, HUNDREDS
 MOV A, #'-' ; transmit minus sign
 MOV @R1, A ; move R0 into memory location R1
 INC R1 ; increment memory location and data so
 CALL Write_text

 HUNDREDS: ; check #hundreds
 POP ACC ; restore original value of A
 PUSH ACC ; remember original value of A
 CPL A
 INC A
 MOV B, #100 ; divide remainder by 100
 DIV AB ; A receives integer quotient
 ; B receives the remainder
 SETB F0
 JZ TENS ; if ACC=0 then num=0xx
 CLR F0
 ADD A, #'0'
 MOV @R1, A ; move R0 into memory location R1
 INC R1 ; increment memory location and data so
 LCALL Write_text

 TENS: ; check tens
 MOV A,B
 MOV B,#10
 DIV AB ; divide remainder by 10
 JNB F0, SEND0 ; if F0 is cleared the a number
 ; exists in the 100s
 JZ UNITS

 SEND0:
 ADD A, #'0' ; only send a zero if number
 MOV @R1, A ; move R0 into memory location R1
 INC R1 ; increment memory location and data so
 CALL Write_text ; existed in the 100s

 UNITS:
 MOV A,B ; send remainder (even if 0)
 ADD A, #'0'
 MOV @R1, A ; move R0 into memory location R1
 INC R1 ; increment memory location and data so
 CALL Write_text
 POP ACC
 POP B

 MOV A,#0F9h
 MOV @R1, A ; move R0 into memory location R1
 INC R1 ; increment memory location and data so
 MOV A,0A5h
 CALL WRITE_TEXT
 MOV A,R3
 ANL A,#00Fh
 SUBB A,#00Fh
 JNB ACC.7, UNIT_TEMP
 CPL A
 INC A
 MOV B, #10 ; divide remainder by 10
 DIV AB ; A receives integer quotient
 MOV A,B ; B receives the remainder
 UNIT_TEMP:
 ADD A,#'0'
 MOV @R1, A ; move R0 into memory location R1
 INC R1 ; increment memory location and data so
 CALL WRITE_TEXT
 MOV A,#0F8h
 MOV @R1, A ; move R0 into memory location R1

Stand-Alone Datalogger with GUI 92

Electronic & Computer Engineering Appendix B

 INC R1 ; increment memory location and data so
 MOV A,#0DFh
 CALL WRITE_TEXT
 MOV A, #'C'
 MOV @R1, A ; move R0 into memory location R1
 INC R1 ; increment memory location and data so
 CALL WRITE_TEXT
 CALL DELAY
 RET

;**
; SENDDATA TO I2C BUS
;**

 SENDDATA:
 ; send start bit
 CALL STARTBIT ; acquire bus and send slave address

 MOV A, SLAVECON ; send slave address
 CALL SENDBYTE ; sets NOACK if NACK received
 JB NOACK, STOPSEND ; if no acknowledge send stop
 MOV A, SLAVEADDH
 CALL SENDBYTE
 JB NOACK, STOPSEND
 MOV A, SLAVEADDL
 CALL SENDBYTE
 JB NOACK, STOPSEND

 MOV A, OUTPUT ; send OUTPUT byte
 CALL SENDBYTE

 STOPSEND:
 CALL STOPBIT ; sends stop bit
 INC SLAVEADDL
 JNB NOACK, SENDRET ; if slave sends no-acknowedge send error
 SETB ERR ; sets the error flag
 SETB I2CRS

 SENDRET:
 CALL DELAY5
 RET

;**
; RCVDATA TO I2C BUS
;**

 RCVDATA:

 ; send start bit
 CALL STARTBIT ; acquire bus and send slave address
 MOV A, SLAVECON
 CALL SENDBYTE ; sets NOACK if NACK received
 JB NOACK, POLL ; if no acknowledge send stop
 MOV A, SLAVEADDH
 CALL SENDBYTE
 JB NOACK, STOPSEND
 MOV A, SLAVEADDL
 CALL SENDBYTE
 JB NOACK, STOPSEND
 INC SLAVECON ; put slave back in transmit mode
 CALL STARTBIT ; acquire bus and send slave address

 MOV A, SLAVECON
 CALL SENDBYTE ; sets NOACK if NACK received
 DEC SLAVECON
 JB NOACK, STOPRCV ; Check for slave not responding.
 CALL DELAY5 ; this lets slave get data ready

Stand-Alone Datalogger with GUI 93

Electronic & Computer Engineering Appendix B

 CALL RCVBYTE ; Receive next data byte.
 MOV INPUT,A ; Save data byte in buffer.

 STOPRCV:
 CALL STOPBIT
 INC SLAVEADDL
 JNB NOACK, RCVRET ; if slave sends NACK send error
 SETB ERR ; sets the error flag
 SETB I2CRS ; this resets the I2C interface

 RCVRET:
 RET

;**
; SEND STARTBIT
;**

 STARTBIT:

 SETB MDE ; enable SDATA pin as an output
 CLR NOACK
 CLR MDO ; low O/P on SDATA
 CALL DELAY5 ; delay 5 Machine cycles
 CLR MCO ; start bit
 RET

;**
; SEND STOPBIT
;**

 STOPBIT:

 SETB MDE ; to enable SDATA pin as an output
 CLR MDO ; get SDATA ready for stop
 SETB MCO ; set clock for stop
 CALL DELAY5 ; delay 5 Machine cycles
 SETB MDO ; this is the stop bit
 RET

;**
; SENDBYTE
;**

 SENDBYTE:

 MOV BITCNT,#8 ; 8 bits in a byte
 SETB MDE ; to enable SDATA pin as an output
 CLR MCO ; make sure that the clock line is low

 SENDBIT:
 RLC A ; put data bit to be sent into carry
 MOV MDO,C ; put data bit on SDATA line
 SETB MCO ; clock to send bit
 CLR MCO ; clear clock
 DJNZ BITCNT,SENDBIT ; jump back and send all eight bits
 CLR MDE ; release data line for acknowledge
 SETB MCO ; send clock for acknowledge
 CALL DELAY5 ; delay 5 Machine cycles
 JNB MDI,NEXT ; this is a check for acknowledge
 SETB NOACK ; no acknowledge, set flag

 NEXT:
 CLR MCO ; clear clock
 RET

Stand-Alone Datalogger with GUI 94

Electronic & Computer Engineering Appendix B

;**
; RCVBYTE
;**

 RCVBYTE:

 MOV BITCNT,#8 ; Set bit count.
 CLR MDE ; to enable SDATA pin as an input
 CLR MCO ; make sure the clock line is low

 RCVBIT:
 SETB MCO ; clock to recieve bit
 CLR MCO ; clear clock
 MOV C,MDI ; read data bit into carry.
 RLC A ; Rotate bit into result byte.
 DJNZ BITCNT,RCVBIT ; Repeat until all bits received.
 ; recieved byte is in the accumulator
 SETB MDE ; Data pin of the master must be an..
 ; ..output for the acknowledge
 SETB MDO ; Send no acknowledge, last byte.
 SETB MCO ; Send no-acknowledge clock.
 CALL DELAY5 ; delay 5 Machine cycles
 CLR MCO ; clear clock
 RET

;**
; DELAY5
;**
; Short delay (5 machine cycles incl CALL time) for the main signals (SCLOCK , SDATA)

 DELAY5:
 NOP
 RET

;**
; READING FROM THE RTC
;**

 READ_RTC:

 CLR RST
 CLR SCLK
 SETB RST
 LCALL DELAY_RTC
 MOV B,#8
 CLR C

 BYTERD1:
 RRC A
 MOV IO,C
 LCALL SCLKW
 DJNZ B,BYTERD1
 MOV B,#8

 BYTERD2:
 LCALL SCLKR
 MOV C,IO
 RRC A
 DJNZ B,BYTERD2
 CLR RST
 LCALL DELAY_RTC
 RET

Stand-Alone Datalogger with GUI 95

Electronic & Computer Engineering Appendix B

;**
; WRITING TIME TO RTC
;**

 WRITE_RTC:

 BYTEWR:
 CLR RST
 CLR SCLK
 SETB RST
 LCALL DELAY_RTC
 MOV B,#8
 CLR C

 BYTEWR1:
 RRC A
 MOV IO,C
 LCALL SCLKW
 DJNZ B,BYTEWR1
 MOV B,#8
 CLR C
 RET

 BYTEWR2:
 RRC A
 MOV IO,C
 LCALL SCLKW
 DJNZ B,BYTEWR2
 CLR RST
 LCALL DELAY_RTC
 RET

 SCLKW:

 CLR SCLK
 LCALL DELAY_RTC
 SETB SCLK
 LCALL DELAY_RTC
 ;CLR SCLK
 RET

 SCLKR:

 SETB SCLK
 LCALL DELAY_RTC
 CLR SCLK
 LCALL DELAY_RTC
 RET

 DELAY_RTC:
 nop
 RET

;**
; DISPLAY ROUTINE
;**

 LCD_MSG:

 CLR A
 MOVC A,@A+DPTR
 INC DPTR
 JZ LCD_MSG9
 CALL WRITE_TEXT
 JMP LCD_MSG

 LCD_MSG9:
 RET

Stand-Alone Datalogger with GUI 96

Electronic & Computer Engineering Appendix B

;**
; SENDS ASCII VALUE CONTAINED INT Acc TO UART
;**

 SENDCHAR:

 JNB TI,$; wait til present char gone
 CLR TI ; must clear TI
 MOV SBUF,A
 RET

;**
; SENDVAL
;**
 ;
 SENDVAL: ; converts the hex value of A into two ASCII chars,
 ; and then spits these two characters up the UART.
 PUSH ACC
 SWAP A ; does not change the value of A.
 CALL HEX2ASCII
 CALL write_text ; send high nibble
 POP ACC
 PUSH ACC
 CALL HEX2ASCII
 CALL write_text ; send low nibble
 POP ACC
 RET

;**
; HEX2ASCII
;**

 HEX2ASCII: ; converts A into the hex character representing the
 ; value of A's least significant nibble
 ANL A,#00Fh
 CJNE A,#00Ah,$+3
 JC IO0030
 ADD A,#007h

 IO0030:
 ADD A,#'0'
 RET

;**
; DOWN_TIMES
;**

 DOWNL_TIMES:

 MOV A, @R0
 MOV B, #100 ; divide remainder by 100
 DIV AB ; A receives integer quotient
 ; B receives the remainder
 SETB F0
 JZ TNS ; if ACC=0 then num=0xx
 CLR F0
 ADD A, #'0'
 mov SBUF, A
 CALL SENDVAL
 CALL DELAY
 CALL DELAY

 TNS: ; check tens
 MOV A,B
 MOV B,#10
 DIV AB ; divide remainder by 10
 JNB F0, SENDX0 ; if F0 is cleared the a number

Stand-Alone Datalogger with GUI 97

Electronic & Computer Engineering Appendix B

 ; exists in the 100s
 JZ UNTS

 SENDX0:
 ADD A, #'0' ; only send a zero if number
 mov SBUF, A
 CALL SENDVAL
 CALL DELAY
 CALL DELAY ; existed in the 100s

 UNTS:
 MOV A,B ; send remainder (even if 0)
 ADD A, #'0'

 MOV SBUF, A
 CALL SENDVAL
 CALL DELAY
 CALL DELAY

 INC R0 ; Increment address
 CJNE R0, #23H, DOWNL_TIMES
 RET

;**
; DOWN_DATA
;**

 DOWNL_DATA:

 MOV A, @R0
 mov SBUF, A
 CALL SENDVAL
 CALL DELAY
 CALL DELAY

 INC R0 ; Increment address
 CJNE R0, #03CH, DOWNL_DATA
 RET

;**
; MAIN PROGRAM
;**

 ORG 0430h

 MAIN:

 LCALL INIT_LCD
 LCALL CLEAR_LCD
 mov TMOD, #20h
 mov TCON, #41h
 mov TH1, #0Fdh
 mov SCON, #50h
 MOV SLAVECON,#0A0h ; clear RW bit
 MOV SLAVEADDH, #00h ; set the high address in external memory
 MOV SLAVEADDL, #00h ; set the low address in external memory
 MOV I2CCON,#0A8h ; sets SDATA & SCLOCK, and
 ; selects master mode
 CLR NOACK
 CLR ERR
 SETB EA
 SETB EX0

 WAITING:
 MOV DPTR, #WAIT
 CALL LCD_MSG ; flash (complement) the red LED
 CPL LED
 CALL DELAY

Stand-Alone Datalogger with GUI 98

Electronic & Computer Engineering Appendix B

 LCALL CLEAR_LCD
 jnb RI, WAITING ; Wait until character recevied
 mov a, SBUF ; get character
 CALL DELAY
 CALL DELAY
 clr RI
 CJNE A,#55h,NEXT
 LCALL CLEAR_LCD

 DATA_LOGGED:
 MOV DPTR, #DOWN
 CALL LCD_MSG
 MOV DPTR, #DOWN
 CALL LCD_MSG
 MOV R0, #18h ; move value at address 40 into R2
 CALL DOWNL_TIMES
 CALL DOWNL_DATA
 RET

 NEXT:
 CJNE A,#0AAh,WARN
 LCALL CLEAR_LCD
 MOV DPTR,#INIT
 CALL LCD_MSG
 MOV DELAYSEC,#00
 MOV TICKS,#10
 MOV MINUTES,#00
 MOV R0,#18h
 MOV R1,#24h ; initialise R1 to 40 to store the
 ; input data from memory location 40
 CALL DELAY
 CALL DELAY

 INITDATA:
 JNB RI, INITDATA
 MOV A, SBUF
 CALL DELAY
 CALL DELAY
 clr RI
 MOV @R0, A
 INC R0
 CALL DELAY
 CALL DELAY
 CJNE R0,#23h,INITDATA
 LCALL CLEAR_LCD

 SCAN_RATE:

 CALL DELAY
 DJNZ TICKS, SCAN_RATE
 MOV TICKS, #10
 INC DELAYSEC
 MOV A, DELAYSEC
 CJNE A, #60, SCAN_RATE
 MOV DELAYSEC, #00
 INC MINUTES

 MOV A, MINUTES
 CJNE A, SCANRATE, SCAN_RATE
 MOV MINUTES, #00
 CALL CONVERT_TEMP
 CALL DELAY
 CALL DELAY

 CJNE R1, #03CH, SCAN_RATE ; reset memory location to 40h
 ; when memory location reaches 50h
 ; saving 16 bytes of data
 CALL DATA_LOGGED
 LCALL CLEAR_LCD
 JMP WAITING

Stand-Alone Datalogger with GUI 99

Electronic & Computer Engineering Appendix B

 WARN:
 LCALL CLEAR_LCD
 MOV DPTR,#ERROR
 CALL LCD_MSG

 FLASH:
 CPL LED ; flash (complement) the red LED
 CALL DELAY ; call software delay
 JMP fLASH ; repeat indefinately

 FINISH:
 NOP
 NOP
 NOP

 END

Stand-Alone Datalogger with GUI 100

Electronic & Computer Engineering Appendix C

Appendix C : Java Help
C.1 HelpMap.JHM File

<?xml version="1.0"?>
 <map>

 <mapID target="helpintro" url="helpfiles\intro.html" />
 <mapID target="crtloverview" url="helpfiles\controls.html" />
 <mapID target="aboutbox" url="helpfiles\about.html" />
 <mapID target="closeproject" url="helpfiles\close.html" />
 <mapID target="cutobject" url="helpfiles\cut.html" />
 <mapID target="copyobject" url="helpfiles\copy.html" />
 <mapID target="exitprogram" url="helpfiles\exit.html" />
 <mapID target="openproject" url="helpfiles\open.html" />
 <mapID target="pagesetup" url="helpfiles\pagesetup.html" />
 <mapID target="pasteobject" url="helpfiles\paste.html" />
 <mapID target="printpage" url="helpfiles\print.html" />
 <mapID target="savefile" url="helpfiles\save.html" />
 <mapID target="savefileas" url="helpfiles\saveas.html" />
 <mapID target="menu" url="helpfiles\menu.html" />
 <mapID target="toolbar" url="helpfiles\toolbar.html" />
 <mapID target="systemcheck" url="helpfiles\systemcheck.html" />
 <mapID target="systemsetup" url="helpfiles\systemsetup.html" />
 <mapID target="reset" url="helpfiles\reset.html" />
 <mapID target="initialisebutton" url="helpfiles\initialisationbutton.html" />
 <mapID target="downloadbutton" url="helpfiles\downloadbutton.html" />
 <mapID target="downloadmode" url="helpfiles\download.html" />
 <mapID target="initialisationmode" url="helpfiles\initialisation.html" />
 <mapID target="dataloggingmode" url="helpfiles\datalogging.html" />
 <mapID target="resultarea" url="helpfiles\resultarea.html" />
 <mapID target="zooming" url="helpfiles\zooming.html" />

 </map>

Stand-Alone Datalogger with GUI 101

Electronic & Computer Engineering Appendix C

C.2 LoggerUIIndex.xml File

<?xml version="1.0"?>
 <index>

 <indexitem text="About LoggerUI" target="aboutbox" />
 <indexitem text="Buttons">
 <indexitem text="Download Button" target="downloadbutton" />
 <indexitem text="Initialise Button" target="initialisebutton" />
 <indexitem text="Reset Button" target="reset" />
 </indexitem>

 <indexitem text="Closing a Project" target="closeproject" />
 <indexitem text="Copying" target="copyobject" />
 <indexitem text="Cutting" target="cutobject" />
 <indexitem text="Exiting a Program" target="exitprogram" />
 <indexitem text="Major Controls" target="crtloverview" />
 <indexitem text="Menu" target="menu" />

 <indexitem text="Modes of Operation">
 <indexitem text="Logger Initialisation" target="initialisationmode" />
 <indexitem text="Logger Download" target="downloadmode" />
 <indexitem text="Data Logging" target="dataloggingmode" />
 </indexitem>

 <indexitem text="Opeing a Project" target="openproject" />
 <indexitem text="Page Setup" target="pagesetup" />

 <indexitem text="Panels">
 <indexitem text="Result Area Panel" target="resultarea" />
 </indexitem>

 <indexitem text="Pasting" target="pasteobject" />
 <indexitem text="Printing" target="printpage" />
 <indexitem text="Saving a File" target="savefile" />
 <indexitem text="Saving a File As" target="savefileas" />
 <indexitem text="System Check" target="systemcheck" />
 <indexitem text="System Setup" target="systemsetup" />
 <indexitem text="Toolbar" target="toolbar" />
 <indexitem text="Zooming" target="zooming" />

 </index>

Stand-Alone Datalogger with GUI 102

Electronic & Computer Engineering Appendix C

C.3 LoggerUItoc.xml File

<?xml version="1.0"?>
 <toc>

 <tocitem text="LoggerUI Application">
 <tocitem text="Introduction" target="helpintro" />
 <tocitem text="Major Controls" target="crtloverview">
 <tocitem text="Initialisation" target="initialisebutton" />
 <tocitem text="Download " target="downloadbutton" />
 <tocitem text="Reset" target="reset" />
 </tocitem>
 <tocitem text="Display Panels" target="crtloverview">
 <tocitem text="Initialisation Panel" target="initialisationmode" />
 <tocitem text="Download Panel" target="downloadmode" />
 <tocitem text="Result Area Panel" target="resultarea" />
 </tocitem>
 <tocitem text="New Project">
 <tocitem text="Open a Project" target="openproject" />
 <tocitem text="Close a Project" target="closeproject" />
 <tocitem text="Saving a File" target="savefile" />
 <tocitem text="Saving a File As" target="savefileas" />
 </tocitem>
 <tocitem text="Working with Graph">
 <tocitem text="Copying an object" target="copyobject" />
 <tocitem text="Cutting an Object" target="cutobject" />
 <tocitem text="Pasting an Object" target="pasteobject" />
 <tocitem text="Zooming" target="zooming" />
 </tocitem>
 <tocitem text="Printing">
 <tocitem text="Print a Graph" target="printpage" />
 <tocitem text="Page Setup" target="pagesetup" />
 </tocitem>
 <tocitem text="LoggerUI Menu and Toolbar">
 <tocitem text="Menu" target="menu" />
 <tocitem text="Toolbar" target="toolbar" />
 </tocitem>
 <tocitem text="Logger System Controls">
 <tocitem text="About LoggerUI" target="aboutbox" />
 <tocitem text="Logger Check" target="systemcheck" />
 <tocitem text="Logger Setup" target="systemsetup" />
 </tocitem>
 <tocitem text="Exit a Program" target="exitprogram" />
 </tocitem>

 </toc>

Stand-Alone Datalogger with GUI 103

Electronic & Computer Engineering Appendix C

C.4 HelpSet.hs File

<?xml version="1.0"?>
 <helpset>
 <title>LoggerUI Application Help</title>

 <maps>
 <homeID>helpintro</homeID>
 <mapref location="HelpMap.jhm" >
 </maps>

 <view>
 <name>Table Of Contents</name>
 <label>LoggerUI TOC</label>
 <type>javax.help.TOCView</type>
 <data>LoggerUItoc.xml</data>
 </view>

 <view>
 <name>Index</name>
 <label>LoggerUI Index</label>
 <type>javax.help.IndexView</type>
 <data>LoggerUIindex.xml</data>
 </view>

 <view>
 <name>Search</name>
 <label>LoggerUI Search</label>
 <type>javax.help.SearchView</type>
 <data
engine="com.sun.java.help.search.DefaultSearchEngine">JavaHelpSearch</data>
 </view>

 </helpset>

Stand-Alone Datalogger with GUI 104

Electronic & Computer Engineering Bibliography

Bibliography
UML Development

 Developing Software with UML
 Bernard Oestereich (1999), Addison-Westley Pub Co

 Enterprise Java with UML
 CT Arrington (2001), John Wiley & Sons

Object Oriented Designs

 Design Patterns: Elements of Reusable Object-Oriented Software,
 Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides (1995),

 Addison-Westley Pub Co

Java Development

 Professional Java Programming,
 Brett Spell (2000), Wrox Press Inc

 Beginning Java 2 – JDK 1.3 Edition,
 Ivor Horton (200), Wrox Press Inc

Stand-Alone Datalogger with GUI 105

Electronic & Computer Engineering Bibliography

Web Sites

 http://www.java.sun.com
Sun Microsystems is the organization that developed Java. Their web site
contains all the APIs, plug-ins, many tutorials and a comprehensive archive of
commonly asked questions.

 http://www.javaworld.com
This is IDG’s weekly Web-based magazine for Java technology programmers.
Java World provides news on new product information, a Java Developer Tools
Guide, Java tips and tricks, cut-and-paste code, live applets and links to various
Java resources on the web.

 http://www.8052.com
This is an online resource, a free service provided courtesy of Vault Information
Services. It contains many tutorials, free source code and links to other 8051-
based web sites.

Stand-Alone Datalogger with GUI 106

