PCA and LFA

Zhiyong Zhang, Ph.D.
Willy Wriggers, Ph.D.

The Molecular Dynamics Sampling Problem

- Protein folding/unfolding
- Large-scale functional motion: 10^{-6} s, 10^{-3} s, s and even longer
- Vibration of bonds: 10^{-15} s
Collective Coordinates and Dimensionality Reduction

Collective Coordinates

- Diagonalize Hessian matrix
 \[C = U A U^T \]
- Principal Component Analysis
 \[C_q = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle \]
- Normal Mode Analysis
 \[C_y = \partial^2 V / \partial x_i \partial x_j \]

Functional motions of a protein may be represented by only a few low-frequency modes.
Global Collective Coordinates:
What are the Limitations?

• In NMA, we do not know a priori which is a functionally relevant mode, the first 12 low-frequency modes are probable candidates.

• In PCA, the global modes don’t converge due to time limitations of the molecular dynamics simulation (sampling problem). Balsera MA, Wriggers W, Oono Y, Schulten K: J Phys Chem 1996, 100: 2567-2572.

• Both methods break the symmetry of structures due to forced orthogonalization:

Local Feature Analysis (LFA)

Goal: an alternative statistical theory that describe dynamic features locally and that does not suffer from the sampling and orthogonalization problems.

Unlike the global eigenmodes, LFA describes objects in terms of statistically derived local features and their positions.

Is LFA applicable to protein dynamics?

Local Feature Analysis (LFA) - Theory (I)

Covariance matrix from the MD simulation: \(C(i, j) = \langle \Delta x_i \Delta x_j \rangle = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle \)

PCA: \(C(i, j) = \sum_{r=1}^{3N} \Psi_r(i) \lambda_r \Psi_r(j) \) \(\rightarrow \) PCA output: \(A_r = \sum_{i=1}^{3N} \Psi_r(i) \Delta x_i \equiv \sum_{i=1}^{3N} K_r(i) \Delta x_i \)

General form for the LFA kernel: \(K(i, j) = \sum_{r=1}^{n} \Psi_r(i) Q_r \Psi_r(j) \) \(\rightarrow \) LFA output: \(O(i) = \sum_{j=1}^{3N} K(i, j) \Delta x_j \)

Residual correlation: \(\langle O(i) O(j) \rangle = \sum_{r=1}^{n} \Psi_r(i) \Psi_r(j) \equiv P(i, j) \)

Output Correlation

n=3

n=15
Local Feature Analysis (LFA)
- Theory (II)

We replaced the n global PCA modes with the full $3N$ LFA output functions. Therefore an additional dimensionality reduction step is required in the LFA output space. We approximate the entire $3N$ outputs with only a small subset of them that correspond to the strongest local features by taking advantage of the fact that neighboring outputs are highly correlated.

Reconstruct the outputs:

$$O^{\text{res}}(i) = \sum_{m=1}^{[M]} \theta_m(i)O(i_m)$$

Optimal linear prediction coefficients:

$$\theta_m(i) = \sum_{i_m} P(i, i_m)P^{-1}(i_m)\theta_{i_m}$$

Average reconstruction mean square error:

$$E^{\text{res}} = \langle |O^{\text{res}}(i)|^2 \rangle \equiv \langle |O(i) - O^{\text{res}}(i)|^2 \rangle$$

Sparsification

(a) The first 4 PCA modes were used to do LFA, $n=4$; (b) $n=8$, (c) $n=12$, and (d) $n=15$. (e) Root-mean-square fluctuations of C_alpha atoms in T4L.
Local Feature Analysis of Myosin

Twelve seed atoms

Twelve local dynamic domains

Convergence Properties

Overlap between 15 modes from first and second half of 10ns trajectory (T4 lysozyme, standard MD)
Convergence Properties

The intrinsic dynamics of local domains is more extensively sampled than that of globally coherent PCA modes.

Outlook: Predicting Functional Motion

- It appears that PCA and NMA over-estimate the coherence of global motion across large biopolymers and create artifacts due to orthogonalization.
- LFA captures local dynamic features reproducibly and is less sensitive to the MD sampling problem.
- We perform a statistical analysis that emphasizes dynamic domains that are moving independently from each other.

Our References: