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Topology-representing neural networks are employed to generate
pseudo-atomic structures of large-scale protein assemblies by combining
high-resolution data with volumetric data at lower resolution. As an
application example, actin monomers and structural subdomains are
located in a three-dimensional (3D) image reconstruction from electron
micrographs. To test the reliability of the method, the resolution of the
atomic model of an actin polymer is lowered to a level typically encoun-
tered in electron microscopic reconstructions. The atomic model is
restored with a precision nine times the nominal resolution of the corre-
sponding low-resolution density. The presented self-organizing comput-
ing method may be used as an information-processing tool for the
synthesis of structural data from a variety of biophysical sources.
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Advances in modern biology and medicine
depend on an understanding of fundamental cellu-
lar processes, most of which involve the actions
and interactions of large biomolecular aggregates.
Three-dimensional (3D) image reconstructions of
aggregates, involving hundreds of thousands to
millions of atoms, are now routinely determined
(DeRosier & Harrison, 1997) by electron
microscopy (EM). To bridge the resolution gap
from individual atoms to the basic functional units
in biological cells, attempts have been made to
combine EM data with high-resolution structures
determined by NMR spectroscopy or X-ray crystal-
lography (Baker & Johnson, 1996). The most com-
mon of these hybrid strategies is the visual
docking of crystallographic structures into envel-
opes derived from low-resolution data to obtain
models of aggregates at pseudo-atomic resolution.
The successful construction of such hybrid models
for viruses and cytoskeletal motor-®lament com-

plexes provides a clear indication of the value of
this approach (Chiu et al., 1997; SchroÈder et al.,
1993; Milligan, 1996). The reliability of cryo EM
data provided, in some cases, a basis for docking
atomic structures into assemblies with a precision
of four to ®ve times the resolution of the exper-
imental data (Baker & Johnson, 1996).

Despite the success of the visual docking meth-
od, there are serious limitations that call for the
development of more advanced techniques. Apart
from the qualitative character of docking by eye,
crystal structures and EM envelopes are, in gener-
al, unreliable determinants of the architecture of
macromolecular assemblies. Often, proteins change
conformations by ``induced ®t'' in the aggregate
(Rayment et al., 1993a; Mendelson & Morris, 1997)
or exhibit spatial variability not present in the crys-
tal (Sosa et al., 1997). Also, visual docking requires
the choice of a molecular boundary in the recon-
struction volume. Usually, a cutoff density value is
chosen for the surface representation, although it is
clear that EM images of molecules lack hard
boundaries (Frank, 1996). A faithful representation
of the molecular surface may even become imposs-
ible if static disorder in averaged EM data alters
the shape of the surface contour signi®cantly.
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We describe a self-organizing algorithm to rep-
resent both crystal structures and low-resolution
volumetric data by a small number of neural
pointers. The quantization of the volumetric data is
independent of the protein surface and will be
particularly useful in practical applications where
spatial disorder renders the low-resolution data
unsuitable for a de®nition of molecular boundaries.
This is the ®rst time neural computing has been
applied to characterize the shape and density
distribution of the occupied volume of large-scale
protein assemblies.

Neural network quantization of
3D biological data

Self-organizing feature maps organize the con-
nectivity of neurons in a cortical layer to optimize
the spatial distribution of the neural responses to a
training sequence of input signals (Willshaw & von
der Malsburg, 1976; Kohonen, 1982; Ritter et al.,
1992). The purpose of the optimization is to con-
vert the similarity of signals into proximity
relationships among the neurons in the cortical
layer. Self-organizing neural networks are typically
applied to solve important information-processing
tasks in arti®cial intelligence, including the for-
mation of topographic sensory maps and visuo-
motor control of robots (Ritter et al., 1992; Zeller
et al., 1997). A consequence of the map formation is
a quantization that approximates the probability
density function p(v) of input signals v 2 <D, using
a ®nite number of neural pointers wi 2 <D,
i � 1, . . . , N. Here, we train neural networks on 3D
biological data sets, using the topology-represent-
ing network (TRN) algorithm developed by
Martinetz & Schulten (1994)

We assume that each neural unit wi receives
input stimuli v(t), t � 1, . . . , tmax, on a manifold
M � <D. The sequence of stimuli will be randomly
selected on the manifold according to p(v). In prac-
tical applications to biomolecular datasets, M is the
discrete set of atom positions or density voxels,
and p(v) is proportional to the atom masses or to
the density values, respectively. The number tmax

of stimuli necessary for a reliable representation of
a discrete manifold M is of the order of its number
of data points. Furthermore, we assume that the
set of neural units wi can develop lateral connec-
tions (synaptic links) with each other. The lateral
connections are described by a connection matrix
C with elements Cij 2 {0, 1}. Initially, the Cij are set
to zero and the weight vectors wi are randomly
distributed near M.

The adaptation of the neural pointers wi at a
given time step t is given by:

wi�t� �wi�tÿ 1� � e�t�eÿki�t�=l�t��v�t� ÿwi�tÿ 1��
i � 1; � � � ;N; t � 2; � � � ; tmax �1�

The parameter l(t) and the step size e(t) are cal-
culated dynamically (see equation (2), opposite).

Information about the arrangement of the receptive
®elds is given by the closeness rank ki (t) of each
neuron i depending on v(t), i.e. the number of
neurons wj with k v(t) ÿ wj(t) k < k v(t) ÿ wi(t) k
(k�k is the Euclidean distance). The ranking
ensures that the adaptation of the wi(t) is con-
trolled by the topological arrangement of neighbor-
ing neurons, avoiding con®nement of neurons to
local minima of the quantization error (Martinetz
et al., 1993). Simultaneously, at a given time step t,
neural units can develop or refresh a connection
with another unit by setting the corresponding
matrix elements of C(t) from zero to 1. Unrefreshed
connections are removed after they exceed a maxi-
mum age T (t). The time-dependent parameters l,
e and T, are computed according to:

l � li �lf =li�t=tmax

e � ei �ef =ei�t=tmax �2�

T � Ti �Tf =Ti�t=tmax

The particular choice of li, lf, ei, ef, Ti and Tf is
not very critical. The parameters given in the
Figure legends were optimized by trial and error.

Figure 1 presents TRN tessellations of the two-
dimensional surface of a torus and of the occupied
volume of the crystal structure of the myosin
motor domain. The TRN algorithm distributes the
weight vectors over the manifold M according to
the probability density of the stimuli (Figure 1).
In general, the neural pointers wi and the corre-
sponding connectivities Cij de®ne a perfect top-
ology-preserving map and form a discrete
representation of the manifold M, even in cases
where M has an intricate topology (Martinetz et al.,
1993). Figure 1(b) illustrates the fact that a mani-
fold with periodic boundaries, such as the two-
dimensional surface of the torus, can be embedded
in a space of higher dimension (here D � 3) to rep-
resent its topology.

The described quantization technique can be
applied to both high and low-resolution datasets.
For polymeric structures, N should be a multiple of
the number of identical subunits in the dataset. Let
K neural pointers wi

h and wj
l (i, j � 1, . . . , K) dis-

cretize the occupied volume of a given subunit of
the aggregate at high (h) and low (l) resolution. As
described below, the K neurons may be derived
from more than one network to identify features at
variable resolution. The neurons divide both high-
resolution and low-resolution data sets into a num-
ber of subregions:

Vl;h
i � fq 2 <Dj jjqÿwl;h

i jj4jjqÿwl;h
j jj j � 1; � � � ;Kg

i � 1; � � � ;K �3�
known in the literature as receptive ®elds, Voronoi
cells, or Dirichlet regions.

We now de®ne the index map:

= : m! n �m; n � 1; � � � ;K� �4�
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which identi®es pairs of corresponding pointers in
both high-resolution and low-resolution data. The
resulting topographic map:

f : Vh
i ! Vl

=�i� �i � 1; � � � ;K� �5�
then correlates regions of the high-resolution struc-
ture with regions of the corresponding low-resol-
ution density. To obtain a pseudo-atomic
resolution model, the pointers wi

h and w=(i)
l are

superimposed by least-squares ®tting (Kabsch,
1976, 1978).

We note that in practical applications the index
map = equation (4) is not known a priori. The dis-
tance matrices:

Dh;l
ij � jjwh;l

i ÿwh;l
j jj �i; j � 1; � � � ;K� �6�

determine the geometric arrangement of the K
neurons in a given subunit. = can be optimized
with respect to the distance matrix mean-square
deviation of the high-resolution and low-resolution
pointers:

�= � 2

K2

X
i>j

�Dh
ij ÿDl

=�i�=�j��2 �7�

The minimum of �= can be found by direct enu-
meration of the K! possible index maps.

Reconstruction of blurred data

We applied the method to the experimentally
well-studied (Holmes et al., 1990; Milligan et al.,
1990; Orlova & Egelman, 1993; Bremer et al., 1994)
actin ®lament (Figure 2). Actin comprises four
structural subdomains (Kabsch et al., 1990), ident-
i®able by quantization with four neurons
(Figure 2(a)). A single neuron from a separate com-
putation identi®es the centroid of the receptive
®eld correponding to a single actin monomer. The
atomic structure of the ®lament is not known, but

crystal structures of actin subunits have been
re®ned against X-ray ®ber diffraction data (Holmes
et al., 1990; Lorenz et al., 1993; Tirion et al., 1995).
The Holmes et al. (1990) model of the actin ®lament
is based on 13 monomers, whose cumulative heli-
cal rotation yields a 180� twist of the 13-mer (cf.
Figure 2(b)). To lower the resolution, the atomic
model was convoluted with a Gaussian ®lter with
standard deviation s � 10 AÊ . A discrete volumetric
density map was computed on a lattice with
voxel spacing 3 AÊ by a weighted sum of the
Gaussian contributions over all atoms (Figure 2(c)).
The value s � 10 AÊ was chosen to imitate the
appearance of experimental (Orlova & Egelman,
1993; Bremer et al., 1994) EM images of actin. We
note that there is only an approximate relation
between s and the nominal resolution of EM
image reconstructions, as the latter value is esti-
mated from the limiting layer-lines of experimental
diffraction patterns (Hawkes & ValdreÁ, 1990).

Using periodic boundaries (Figure 2(c)) in the
z-direction, 13 neurons and 52 neurons were dis-
tributed in two separate computations to identify
the centroid and the adjacent subdomains of each
actin monomer. The two resulting networks are
superimposed with the ®lament density in
Figure 2(d). The ®ve neurons de®ning the position
and orientation of a monomer (Figure 2(a)) were
least-squares ®t (Kabsch, 1976, 1978) to the corre-
sponding neurons in the 13-mer with a rms devi-
ation of 3.4 AÊ . Monomer orientations in the
reconstructed ®lament, shown in Figure 2(e), were
correctly reproduced according to the distance
matrix criterion (equation (7)). The reconstructed
®lament (Figure 2(e)) exhibits an (atom-) rms devi-
ation of only 1.1 AÊ from the original model
(Figure 2(b)).

Application to electron microscopy

The identi®cation of features in volumetric data
from EM is complicated by the fact that the

Figure 1. Topology-preserving tessellation with the TRN: surface of a torus (N � 250 neurons) after (a) 10,000 and
(b) 100,000 time-steps, and (c) volumetric tessellation (N � 10 neurons, black) of the crystal structure (Rayment et al.,
1993b) of myosin subfragment S1 after 200,000 time-steps (the myosin a-helical tail is decorated by the essential light
chain, green, and the regulatory light chain, red). Lines represent lateral connections Cij � 1. Parameters (equations (1)
and (2)): ei � 0.3; ef � 0.02; Ti � 0.1 N; Tf � 0.8 N; li � 0.2 N; lf � 0.02. The computations required ®ve minutes com-
puting time on a Silicon Graphics Indigo 2 workstation. Atomic models of biopolymers (Figures 1±3) were rendered
with the molecular graphics program VMD (Humphrey et al., 1996). Other software, including the TRN code, was
developed by W.W. (unpublished results).
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Figure 2. Reconstruction of an actin ®lament from low-resolution data. (a) Quantization of the actin monomer
structure. Actin was modeled (Wriggers & Schulten, 1998) based on the actin-gelsolin segment-1 complex
(McLaughlin et al., 1993). One neuron (red) was placed to identify the centroid of the atomic structure. Four neurons
(yellow), corresponding to the actin structural subdomains 1-4 (Kabsch et al., 1990), were placed in a second compu-
tation. The neuron positions are averages from ten statistically independent computations. Parameters (equations (1)
and (2)): tmax � 1,000,000; ei � 0.03; ef � 0.001; li � 0.2 N; lf � 0.02. (b) Model of the actin ®lament (Holmes et al.,
1990) built from 13 subunits (rise per monomer 27 AÊ ; rotation per monomer ÿ116.154�). (c) Isosurface of the actin
®lament at low resolution rendered at half-maximal contour level. The contribution of a single atom to the density
value of a voxel on a 3D lattice is given by the Gaussian:

G��x;�y;�z� � exp
ÿ3��x�2

2s2

� �
exp

ÿ3��y�2
2s2

� �
exp

ÿ3��z�2
2s2

� �
�8�

where s � 10 AÊ is the 3D standard deviation of G, and (�x, �y, �z) is the difference vector between an atom and a
voxel on the lattice. Periodic boundaries were realized by embedding the 3D unit cell (comprising a 180� turn of the
®lament) in <4 according to the transformation:

u1 � x

u2 � y �9�
u3 � �R=2p� cos�2pz=R�
u4 � �R=2p� sin�2pz=R�

where R � 351 AÊ is the unit cell repeat (comprising 13 monomers) in the z-direction, (x, y, z) 2 <3 is the position of
an atom or low-resolution voxel, and u � (u1, u2, u3, u4) 2 <4 is the corresponding position in the periodic space
de®ned by

p
(u3

2 � u4
2) � R/2p. (d) Quantization of the actin ®lament density (wire mesh). Two neural networks are

superimposed: 13 neurons (red) identify the actin monomers, and 52 neurons (yellow) identify individual actin sub-
domains. The shown positions were averaged over the 13 subunits by helical projection. Parameters (equations (1)
and (2)): tmax � 10,000,000; ei � 0.03; ef � 0.001; li � 0.2 N; lf � 0.02. (e) Atomic model of the ®lament, reconstructed
with VMD (Humphrey et al., 1996) by least-squares ®tting of corresponding neurons from high-resolution and low-
resolution data. The isosurfaces were generated with an improved version (Heiden et al., 1993) of the ``marching
cubes'' algorithm (Lorensen & Cline, 1987), adapted from the program VIEWMOL (Bleiber & Hill, 1993). The com-
putations (Figures 2 and 3) required six hours computing time on a Silicon Graphics Indigo 2 workstation.
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experimental density does not strictly correspond
to the object density. The voxel histogram (Frank
et al., 1991; Frank, 1996) of an image reconstruc-
tion of actin from micrographs (Orlova &
Egelman, 1993) in Figure 3(a) illustrates two gen-
eral properties of experimental density distri-
butions. First, a pronounced peak at low
densities (here shifted to the origin) is due to
background scattering. The protein density corre-
sponds to a second, broader peak at higher den-
sities. When integrating the histogram ``from the
top down'', the known molecular volume of actin
corresponds to a (dimensionless) boundary den-
sity value of 30 (E. H. Egelman, personal communi-
cation). Figure 3(b) shows the experimental
surface (Orlova & Egelman, 1993), rendered at
the slightly smaller threshold value of 24. At this
density, the isosurface resembles the surface of
the control data in Figure 2(c). For the quantiza-

tion with the TRN (Figure 3(c)), experimental
densities below a value of ten were assumed to
be caused by background scattering (cf.
Figure 3(a)) and were set to zero. Stimuli v were
then randomly selected on the 3D lattice accord-
ing to the density distribution above the cutoff.
The atomic structure of each actin monomer was
docked into the low-resolution data by least-
squares superposition (Kabsch, 1976, 1978) of the
®ve neural pointers (Figure 2(a)) with a rms devi-
ation of 3.9 AÊ . The correct orientation of the
monomer was determined from the minimum of
�= (equation (7)). Figure 3(d) shows the resulting
atomic resolution model. The hybrid model of
the polymer obtained by combining crystal and
EM data closely resembles the Holmes (1990)
model of actin. The (atom-) rms deviation of the
hybrid model from the Holmes model
(Figure 2(b)) is 2.7 AÊ .

Figure 3. Construction of the actin ®lament structure from experimental low-resolution data. (a) Histogram of the
density distribution in the image reconstruction from negatively stained specimens (Orlova & Egelman, 1993)
(51 � 51 � 117 voxels; 50 histogram bins in the density interval [ ÿ 15, 57]). The sharp peak at lower densities is due
to the background scattering density, the broader peak due to the protein. (b) Isosurface of the actin density map
(Orlova & Egelman, 1993) with periodic boundaries (Figure 2), rendered at a threshold value of 24 (helical parameters
same as in Figure 2(b)). (c) Quantization of the actin ®lament density (wire mesh) with periodic boundaries (Figure 2).
Two neural networks are superimposed: 13 neurons (red) identify the actin monomers and 52 neurons (yellow) ident-
ify individual actin subdomains. The neuron positions were averaged over the 13 subunits by helical projection. Par-
ameters (equations (1) and (2)): tmax � 10,000,000; ei � 0.03; ef � 0.001; li � 0.2 N; lf � 0.02. (d) Atomic model of the
®lament, constructed with VMD (Humphrey et al., 1996) by least-squares superposition of corresponding neurons
from high-resolution and low-resolution data.
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Table 1 summarizes the spatial variability of the
neuron positions in the monomer and ®lament
computations. The neuron positions in the ``simu-
lated'' volumetric density are well de®ned and
their precision (<1 AÊ ) is comparable to that of
neurons placed into the high-resolution structure.
The low rms deviations from helical symmetry
indicate that the placed neurons are not in register
with the lattice, i.e. the positions are not dependent
on the discretization of the low-resolution data.
Neuron positions in the experimental volumetric
data are less precise. Neurons corresponding to
actin subdomains 1 and 3 exhibit deviations from
the helical symmetry by 3-4 AÊ . Hence, the neuron
positions were averaged over the 13 subunits by
helical projection in the construction of the hybrid
model (Figure 3(d)).

Discussion

The TRN identi®es features in low-resolution
images and relates these features with available
atomic structures. So far, researchers were able to
achieve this synthesis of data at various resolutions
intuitively by inspection, but depended on the
accuracy of the visual representation of the data
(Frank, 1996). The presented computational strat-
egy bypasses the need to visualize the unreliable
surface contour of biomolecules, and accurately
and reproducibly characterizes features within the
volumetric data set.

It is assumed that the electron density of 3D
image reconstructions from EM is proportional to
the object density and, thereby, can be related to
the distribution of atoms in a high-resolution struc-
ture. This relationship can be achieved by correc-
tion of the contrast transfer function (Hawkes &
aldreÁ, 1990) in cryo EM, but is not strictly valid for
image reconstructions from negatively stained spe-
cimens (Frank, 1996). The constructed pseudo-
atomic model of the actin ®lament (Figure 3(d))
suggests that images from negatively stained
micrographs are suitable in practical applications
of the self-organizing method.

The hybrid model derived from the experimental
image reconstruction (Figure 3(d)) corroborates the
Holmes (1990) model of the actin ®lament. This
well-known model of ®lamentous actin was
re®ned against X-ray ®ber diffraction data at
8 AÊ resolution. The 2.7 AÊ rms deviation of the

hybrid model from the Holmes model is within the
experimental uncertainty. The atomic model of
actin ®lament reconstructed from ``simulated'' low-
resolution data suggests that the self-organizing
method restores the atomic structure with a pre-
cision nine times the nominal resolution of the
volumetric data.

In applications to macromolecular assemblies
comprising identical subunits (such as actin ®la-
ments), the centroid of individual subunits is ident-
i®able by a single neuron per subunit, and the
subunit orientation is identi®able by a larger num-
ber (here four) neurons per subunit. The ``opti-
mum'' number of neurons is determined by the
shape of the protein and may vary among appli-
cations. As a rule of thumb, there should be at
least three neurons per subunit to determine the
orientation, but no more than ten, to avoid combi-
natorial complexity (equation (7)). Alternatively, an
optimum representation may be de®ned as the
number of neurons that minimize a normalized
quantization error (Martinetz et al., 1993) of a
given data set (W.W., unpublished results).

In realistic situations, one can expect certain limi-
tations that require extensions to the method
described here. First, the resolution of the EM data
may be too low for an identi®cation of features
that would unambiguously determine the orien-
tation of a protein within the EM data set
(McGouch et al., 1997). In such situations, a small
number N of neurons (e.g. N � 2 for an ellipsoidal
density distribution) may be useful to reduce the
degrees of freedom to be explored in an exhaustive
conformational search of possible docking orien-
tations (Strynadka et al., 1996). Second, additional
neurons may be necessary to account for small
regions of the low-resolution density that are not
completely represented by the crystal structure of
the subunits. In this case, the size of the receptive
®elds of these neurons can be adjusted (Ritter et al.,
1992) by assigning individual enlargement factors
e � ei (equation (1)). Third, subunits may change
their conformation in the aggregate by ``induced
®t''. To determine these conformational changes at
atomic resolution, the topographic map f (equation
(5)) might be useful as a constraint in steered mol-
ecular dynamics simulations (Collins et al., 1995;
GrubmuÈ ller et al., 1996; Izrailev et al., 1997, 1998).

In conclusion, research in arti®cial intelligence
has produced powerful computing techniques that

Table 1. Spatial variabilities (rms ¯uctuations) of neuron positions

rms fluctuation (AÊ )
Structure Figure Resolution COD SD1 SD2 SD3 SD4

Monomer 2(a) Atomic 0.53 0.35 0.36 0.30 0.36
13-mer 2(c) 10 AÊ 0.48 0.40 0.58 0.54 0.33
13-mer 3(b) 20 AÊ a 0.91 3.70 1.40 2.89 1.50

COD denotes the centroid neuron; SD1, SD2, SD3 and SD4 denote neurons corresponding to the four subdomains of actin
(Figure 2(a)). The monomer data were obtained from ten statistically independent calculations. The variabilities of neuron positions
in the simulated (Figure 2(c)) and in the experimental (Figure 3(b)) low-resolution ®lament data sets were computed by helical pro-
jection.

a Resolution estimated based on limiting layer-lines in reciprocal space (E. H. Egelman, personal communication).
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imitate the information processing employed by
biological neural systems (Amit, 1989; Hertz et al.,
1991; Ritter et al., 1992). Neural network algorithms
are of increasing importance in biological appli-
cations, where they help to integrate a multitude of
experimental data (Wade et al., 1992; Andrade et al.,
1993; van Osdol et al., 1994; Schuchhardt et al.,
1996; Fernandez & Carazo, 1996; Schneider et al.,
1998). The presented topology-representing meth-
od for the quantization of macromolecular aggre-
gates will be valuable in many areas of structural
biology where datasets are studied at varied resol-
ution.
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