
The Digital Paths Supervised Varian
e(DPSV) Denoising FilterSupplementary Text (Suppl. Data 1) for�Automated Tra
ing of Filaments in 3D Ele
tron TomographyRe
onstru
tions using S
ulptor and Situs� byMirabela Rusu, Zbigniew Starosolski, Manuel Wahle,Alexander Rigort, and Willy WriggersWe des
ribe the Digital Paths Supervised Varian
e (DPSV) denoising �lter as analternative to the simple Gaussian-weighted averaging used the main text. Free opensour
e implementations of DPSV are available in our S
ulptor and Situs pa
kagesat http://s
ulptor.bioma
hina.org and http://situs.bioma
hina.org. DPSVuses lo
al varian
e information to 
ontrol noise in 3D 
ryo-ET re
onstru
tions in alo
ally adaptive manner. The method was re
ently proposed for 
olor image pro
ess-ing (Sz
zepanski et al., 2004; Smolka, 2008; Sz
zepanski, 2008), and was adapted for
ryo-ET as follows.The DPSV �lter pro
eeds in three steps. The �rst step is the generation of digitalpaths of length P inside a 
ubi
 �mask� of (odd-numbered) width M ; the se
ond step
orresponds to a supervised 
lassi�
ation of paths based on a dis
riminant analysis;and the third step is the 
omputation of the output intensity of the voxel as a kernel-weighted average of the sele
ted paths from the previous steps, where the parameter
β de�nes the size of the exponential kernel. In the S
ulptor graphi
s program, version2.1, the �lter 
an be applied to a map via the menus �Volume� → �DPSV Filter�(entering M , P , β parameters in the pop-up dialog box). Situs version 2.7 o�ersa stand-alone denoising program, vol�tr, that 
an be run in the UNIX shell. Bothimplementations of DPSV have been parallelized for multi-
ore (shared memory)ar
hite
tures using OPENMP (http://openmp.org).The algorithm for a hypotheti
al 2D 
ase with M = 5, P = 2 (pixel units)is presented in Supplementary Figure 1. S.F. 1A shows how the set of self-avoidingpaths in the mask are 
omputed on
e, after input of the map and the parameters. Themask (and the pre-
omputed set of paths) are then �moved� a
ross the 3D map duringan exhaustive translational s
an. The mask size M and path length P are parametersthat de�ne the path folding pattern and lo
al rea
h of the �lter. In this work, weused M = 2P + 1, whi
h favors straight paths for the dete
tion of linear featuressu
h as �laments. S.F. 1B shows paths in a simpli�ed 2D 4-neighborhood model.1
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Supplementary Figure 1: (A) S
hemati
 overview of the DPSV denoising pro
ess. (B) Illustrationof a 2D digital self-avoiding walk through one of four nearest neighbors (3 paths of length P = 2are shown).In our 
ase of 3D volume data, we in
luded diagonal 
onne
tions (26-neighborhoodmodel).We applied a dis
riminant analysis (supervised 
lassi�
ation) to distinguish be-tween paths a�e
ted by noise (whi
h are dis
arded) and those that ideally in
ludethe true signal (Smolka, 2008). For the dis
riminant analysis, a �
onne
tion 
ost�
Λ is 
omputed for all paths. The individual 
onne
tion 
ost des
ribes the absolutedi�eren
e of normalized intensities between a 
enter voxel pi in the mask and a linkedvoxel pi(1),l,k (S.F. 1B), divided by their Eu
lidean distan
e. The 
onne
tion 
ost ofa path Λ is then de�ned as the maximum 
ost among voxels linked by one path.Our observation shows that digital paths with high 
onne
tion 
ost are usuallypaths that in
lude noise or 
ross the edge of the stru
ture. We applied Fisher's dis-
riminant analysis (FDA) to separate the set of paths into two 
lasses (Smolka, 2008).The 
lass with higher 
onne
tion 
ost was then ex
luded from further 
onsideration.This way, the algorithm should ideally preserve only the information that belongs torelatively smooth intensity lands
apes and suppress areas a�e
ted by noise.The output intensity of the 
entral pixel of the mask was �nally 
al
ulated as a
ost-weighted mean of the neighboring intensities (termed �Similarity Fun
tion� inS.F. 1A). We use an exponential weight for the 
ost-based averaging, K(β, Λ) = e−βΛ.2



The parameter β de�nes the �sharpening� of the map, with higher β indi
ating moresharpening (but due to the 
ost-weighting it is not a linear relation). Empiri
al testssuggest useful values (that maximize SNR) in the range of 0.01-0.0001. Althoughthe averaging is performed only over immediately neighboring voxels, the informationfrom more distant voxels is 
onsidered indire
tly by means of the 
ost fun
tion Λ.
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(E)(E) (F)(F)(D)(D)Supplementary Figure 2: Comparison of Gaussian-weighted averaging and DPSV �ltration.Shown are iso-surfa
es of a 3D 
ryo-ET re
onstru
tion of unstained HIV-1 virion (EMDB entry1155, Briggs et al. 2007). (A) Original raw data (
ropped; density range: 0-189; iso level: 139.08).(B) Gaussian-weighted average (sigma-1D: 1 voxel; iso level: 134.70) applied to (A). (C) DPSV�lter (M = 5, P = 2, β=0.001; iso level: 136.00) applied to (A). (D) Cross-se
tion of (A). (E)Cross-se
tion of (B). (F) Cross-se
tion of (C). The DPSV �lter uses 26-neighborhood model. Themole
ular graphi
s were generated with S
ulptor (Birmanns et al., 2011).S.F. 2 
ompares the results of Gaussian-weighted averaging and DPSV �ltrationof an HIV-1 virion map. The HIV-1 map is a frequently used test system for de-noising (van der Heide et al., 2007; Fernandez, 2009; Wei and Yin, 2010); therefore,our results 
an be 
ompared to those in the literature. The �ltered 
ross-se
tions(S.F. 2E,F) 
learly show the 
oni
al 
ore of the virion, in
luding a region of highdensity within the 
ore (near the broad end), likely representing the ribonu
leopro-3



tein 
omplex of the viral genome with the nu
leo
apsid domain (Briggs et al., 2007).Both �lters (S.F. 2E,F) have similar e�e
ts on the original raw data and there islittle di�eren
e dis
ernible in the maps by eye, demonstrating that the DPSV �lter(M = 5, P = 2, β=0.001) is well mat
hed to the Gaussian averaging (sigma-1D: 1voxel; sigma-1D is the standard deviation of the Gaussian fun
tion in 1D, not the3D standard deviation, √3 sigma-1D; the Gaussian was trun
ated at 3 sigma-1D).We used these mat
hed �lter parameters for the validation dataset of the main text.
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Supplementary Figure 3: Di�eren
e of Gaussian-weighted averaging and DPSV �ltration: TheDPSV-�ltered se
tion of the HIV-1 virion shown in S.F. 2F was subtra
ted from the Gaussianaveraged se
tion shown in S.F. 2E. The Figure was generated with MATLAB 7.9.0 (The MathWorksIn
.).S.F. 3 shows the di�eren
e of Gaussian-weighted averaging and DPSV �ltration inmore detail. The maximum dis
repan
y is only 2.1% of the maximum density (189)of the original map in S.F. 2D due to the similarity of the denoising shown above. The4



dis
repan
y map is dominated by �
enter-surround� patterns that indi
ate di�erentpoint spread properties of the �lters. Owing to the relatively bigger point spreadof the Gaussian, high-density features in the original map (white in S.F. 2D) yieldnegative (red) 
enters and positive (blue) surround in the dis
repan
y map. Likewise,low-density features (dark in S.F. 2D) yield positive 
enters and negative surround. Inother words, DPSV preserves more details than the Gaussian at 
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