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Abstract

The modeling of large biomolecular assemblies fre-
quently requires a combination of multi-resolution
data from a variety of biophysical sources. Sev-
eral algorithmic solutions to this docking problem
have been proposed which are usually based on
the spatial cross correlation. In [1] it was shown
that Laplace-filtering techniques can improve the
docking performance of these algorithms. This
note presents the implementation and first results of
the Laplace-filter enhanced fitting into the interac-
tiveSenSitus program, which supports the docking
by virtual reality (VR) techniques (3D-stereoscopic
view and haptic rendering). This implementation
has to consider the special needs of the interactive
rendering strategy. We employ reduced models us-
ing vector quantization to achieve the required force
update rate.

1 Introduction

Future advances in modern biology and medicine
will depend on an understanding of fundamental
cellular processes, most of which involve the ac-
tions and interactions of large bio-molecular assem-
blies [2]. To this end it is essential to determine
their structure on an atomic level of detail, i.e. at a
resolution of a fewÅ (=10−10m). However, typi-
cally these complexes are solved by means of elec-
tron microscopy (EM) at medium- to low-resolution
(10-30Å). Fortunately, their subunits (e.g. specific
proteins) are usually known at atomic detail using
X-ray crystallography. To infer the atomic struc-
ture of the large complexes one can build them from
their subunits, i.e., by combining multi-resolution
data from a variety of biophysical sources.

Several algorithmic solutions to this problem
have been proposed [3]. The majority of the match-
ing algorithms is based on the correlation coeffi-
cient [4, 5, 6] as a fitting criterion. Although suc-
cessful, this approach of fitting the probe to the tar-
get suffers from the ambiguity of the correlation co-
efficient and is thereby not applicable to all problem
settings [3]. The multi-resolution docking can also
be done visually [7] by exploiting the shape simi-
larity of the two objects. This approach allows an
expert to take advantage of biochemical knowledge
and it can be used even with very noisy experimen-
tal data. However, the docking by eye is inherently
subjective and not fully reproducible.

The SenSitus [8, 9] program uses VR tech-
niques to combine the advantages of both ap-
proaches while avoiding their shortcomings. It aug-
ments the interactive visual information with real-
time force-feedback. This feedback force corre-
sponds to the gradient of the cross-correlation coef-
ficient and is exerted by a haptic device (see Fig. 1).
While the force-feedback guides the user towards a
better fitting location, the 3D visualization does al-
low for a simultaneous maximization of the shape
similarity criterion by visual docking. Thereby the
ambiguity problem of the correlation coefficient is
alleviated. In Sec. 2 we briefly review the feedback-
force calculation ofSenSitus which involves vec-
tor quantization to speed up the calculation and to
meet the real-time requirements of the interactive
haptic rendering.

It is known that the simple correlation-based
docking yields poor results when the resolution of
the EM-data falls below≈15Å [3]. In [1] it has
been shown that the docking performance improves
significantly when the correlation is not calculated
from the spatial distribution but from the image un-
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der the Laplace-filter. The Laplace-filter provides
edge information i.e. introduces the distinction be-
tween interior and contour region. Again, a straight-
forward implementation of this idea intoSenSi-
tus is prohibited by the force-update rate required
for a high quality haptic rendering (0.5-1kHz [10]).
Therefore the vector quantization method has to be
extended to Laplace-filtered maps, as discussed in
Sec. 3. In Sec. 4 first results are presented.

2 Correlation based fitting and vector
quantization

To fit the high-resolution structure into the low-
resolution data the originalSenSitus version per-
forms the following steps:

• The high-resolution data are transformed into
a density distributionρc by means of a Gaus-
sian blurring. The resolution is lowered to
match with the low-resolution EM-distribution
ρEM.

• To speed up the subsequent calculations the
distributionρc is vector-quantized, i.e. a num-
ber k of so-called code-book vectors,wi, are
calculated. Each code-book vector represents
a region of the original data (the corresponding
“Voronoi cell”). This is done using the Topol-
ogy Representing Networks (TRN)-algorithm
[11] 1. Thus the distribution can be approxi-
mated by:

ρc(r) ≈

k∑

i=1

δ(r − wi) (1)

• Finally the quality of the fit is judged by means
of the cross-correlationCρ. For a given ro-
tation R and translationT the correlation is
given by the following expression:

C
ρ(R, T ) =

∫

ρc(R,T, r) · ρEM(r)d3
r

=

k∑

i=1

ρEM(wi(R,T ))

1The search for a partition of a given space by Voronoi cells
is mathematically related to the identification of “receptive fields”
in the theory of artificial neural networks (ANN) and the code-
book vectors,wi, can be viewed as the analog to “synaptic weight
vectors” [12, p.227]. The TRN method takes advantage of this
similarity and applies a technique which was originally designed
in the context of ANN to the problem of vector-quantization [11,
13, 14].

The last line follows when substituting Equ. 1
into the definition of the correlation.

SenSitus uses the gradient of the correlationCρ

as a feedback-force which drives the user into the
closest maximum of the correlation. Fig. 1 shows a
haptic device which exerts this force on the user.

Figure 1: Force-feedback device “Phantom
1.5/6DOF”, manufactured by SensAble Technolo-
gies.

Fig. 2 displays an example of an atomic structure
fitted into a low-resolution density.

Figure 2: Atomic structure of the RecA monomer
fitted into the low-resolution density of the RecA
hexamer (displayed as an iso-surface) [17].

3 Laplace-filter enhanced fitting

It is known that for resolutions below 15Å the spa-
tial cross-correlation loses its discrimination power
[3]. In [1] it has been shown that the docking per-
formance improves significantly when the correla-



tion is not calculated from the spatial distribution
but from the image under the Laplace filter.

3.1 Definition

The Laplace-filter is the mapping of a density onto
the sum of its second derivatives:

L : ρ(x, y, z) → ∇
2
ρ(x, y, z) = ρ

L(x, y, z)

This well-known filter from image-processing em-
phasizes contour information [15]. Typically this
filter assigns positive values to the contour and neg-
ative values to the interior of the corresponding
structure. Fig. 3 illustrates these features for a 2-
dim example. The application of the Laplace-filter

Figure 3: Left: density distribution. Right: image
after Laplace-filtering.

faces the problem, that any hard edges in the exper-
imental distribution (e.g from cropping or thresh-
olding of the density) lead to a divergence of nu-
meric values. Hence a masking has to be applied
at hard edges before the Laplace filter can be used
[15]. Our smoothing-algorithm is based on an itera-
tive solution of the Poisson equation (i.e.,∇

2ρ = 0)
in a 5 voxel wide boundary surrounding positive
density, which guarantees a vanishing Laplacian
in this region, followed by a masking of all other
non-positive density after application of the Lapla-
cian filter. This technique was originally devel-
oped for versions 2.1 and later of the theCoLoRes
(Contour-based Low-Resolution docking) program
which is part of theSitus [16] package.

3.2 Vector-quantization of Laplace fil-
tered maps

The implementation of the Laplace-filter into a VR
environment has to consider the special needs of the
interactive rendering strategy. In the first place the

vector-quantization of the structure data should still
be employed to retain the high force-update-rate of
1kHZ [10]. Thus we have modified the method out-
lined in Sec. 2 in the following way:

• The code-book vectors of the atomic structure
are now calculated from the image ofρc un-
der the Laplace-filter,ρL

c . However, the TRN
vector-quantization method can not treat nega-
tive voxel values2. Before applying the vector-
quantization one therefore has to flip the sign
of the negative entries. In addition the contour
and interior densities are normalized by a sep-
arate mapping into the interval[0, 1]:

ρ
L
c (x, y, z) → M(ρL

c (x, y, z)) ∈ [0, 1] (2)

We then calculate the code-book vectors for
the interior,wI

i , and the contour,wC
i , in turn3.

• The low-resolution density has to be Laplace-
filtered as well. As mentioned in Sec. 3.1
masking and relaxation techniques have to be
applied first. The resulting distribution after
relaxing and Laplace-filtering will be denoted
asρL

EM.
• The property of the Laplace-filter to as-

sign negative voxel-values has to be ac-
counted for to calculate the correlation cor-
rectly. One therefore needs to recover the sign-
information for the code-book vectors. Given
r code-book vectorswC

i which correspond to
the contour region ands vectorswI

i corre-
sponding to the interior region, the Laplace-
correlation can be expressed as separate sums
over interior and contour:

C
L(R, T ) =

∫

ρ
L
c (R, T ) · ρL

EMd
3
r

2The TRN vector-quantization method treats the densities asa
probability distribution for the selection of random startvectors,
hence they need to be positive [11].

3A combined quantization is in fact not possible, since regions
which are represented by the same code-book vector (“Voronoi
cells”) would in general contain interior and contour voxels.
Hence, a unique assignment of the corresponding code-book vec-
tors to either interior or contour would be impossible. A desired
side effect of calculating the code-book vectors for interior and
contour-region in turn is that it allows to adjust the weightof these
different regions (i.e. the number of code-book vectors) manually.
In Sec. 4.3.2 we investigate the impact of different ratios between
the number of interior and contour code-book vectors.



=

r∑

i=1

ρ
L
EM(wC

i (R, T ))

︸ ︷︷ ︸

contour-match

−

s∑

i=1

ρ
L
EM(wI

i (R, T ))

︸ ︷︷ ︸

interior-match

The second term is negative to increase the
correlation when evaluated for the interior re-
gion of ρEM i.e. when the interior of the
atomic-structure data matches the interior of
the low-resolution data.

4 Results

4.1 Laplace-filter

Fig. 4 illustrates the effect of the Laplace filter for
the RecA hexamer.

Figure 4: Cross-section of the spatial density map
(left) and the same cross-section after application
of the Laplace-filter for the RecA hexamer.

4.2 Vector quantization

Fig. 5 shows an atomic structure (tube represen-
tation) together with the code-book vectors of the
contour-region (dark balls) and the interior-region
(light balls). It can be seen that the code-book vec-
tors are indeed located in the corresponding region.

4.3 Comparison with the spatial correla-
tion

We now turn to the comparison between the
Laplace-correlation based docking with the original
spatial-correlation based approach. We investigate

Figure 5: RecA monomer (tube representation)
with 10 code-book vectors of the contour-region
(dark balls) and 20 code-book vectors for the
interior-region (light balls).

for which resolutions the Laplace-correlation out-
performs the spatial-correlation. However, this task
is related to the question how the total number of
code-book vectors as well as the ratio between inte-
rior and contour code-book vectors needs to be ad-
justed to yield optimal results. Finally we analyze
the impact of the vector quantization method on the
Laplace-filter enhanced fitting.

All tests are based on the docking of the atomic
structure of the RecA-monomer [17] into a low-
resolution map which was obtained from blurring
the atomic structure data of the RecA hexamer (see
Fig. 2). This use of pseudo-data has the advan-
tage that a well defined best-docking position exists,
with which the performance of the algorithm can be
compared.

4.3.1 Dependence on the resolution

To investigate the dependence of the docking per-
formance on the resolution of the target map we
have blurred the RecA hexamer to resolutions of
15, 20 and 25̊A. The position of the RecA monomer
was varied in 1̊A steps in a range of±10Å around
the optimal docking position along a given axis. For
each position the correlation was calculated4. Fig. 6
shows the results for this analysis. Compared is
the docking-performance for spatial- and Laplace-
correlation when the RecA monomer is approxi-

4In addition at each position the rotation was chosen which
maximizes the correlation.



Figure 6: Comparison of the docking performance
for different resolutions of the target map. The
plot shows the correlation as a function of the dis-
placement around the optimal docking at 0. The
monomer was approximated with 70 code-book
vectors. In the Laplace case these were distributed
in equal shares to interior and contour region. The
Laplace method shows a more pronounced maxi-
mum of the correlation in all cases. This results into
a stronger feedback force which drives the system
into the original docking position.

mated with 70 code-book vectors (the monomer
consists of 443 atoms). For the Laplace-filtered data
an equal number of code-book vectors assigned to
the interior and contour region was chosen.

The study confirms the expectation that with
dropping resolution the Laplace method outper-
forms the spatial correlation i.e. the Laplace-
correlation displays a better defined maximum with
steeper edges, resulting into a stronger feed-back
force which drives the system into the best dock-
ing position. Fig. 7 compares the performance of
Laplace and spatial correlation for 25Å data in the
xy-plane. For every position the optimal rotation
was calculated. It can be clearly seen that the
Laplace method (top) distinguishes the 6 possible
docking positions while the spatial correlation ranks
the whole RecA structure high.

Finally, Fig. 2 in the appendix compares the
docking based on the spatial correlation and the
Laplace correlation in terms of the resulting posi-
tions for the 3D structure. Fig. 2a in the appendix
shows that for the spatial correlation based method
the best fit is shifted from the optimal position by≈
1Å. The Laplace method can reproduce the optimal
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Figure 7: Docking of the RecA monomer into the
hexamer at 25̊A resolution. Displayed is the corre-
lation in thexy-plane. Top: Laplace-filter method,
bottom: spatial correlation. The Laplace method
leads to well defined maxima for the monomer
while the spatial correlation ranks the whole RecA
structure high.

position within a small fraction of 1̊A, at least if a
proper choice for the fraction of interior and contour
code-book vectors is made (see Fig. 2b and Fig. 2c
in the appendix). The next section is devoted to the
question how the performance of the Laplace dock-
ing depends on the fraction of interior and contour
code-book vectors.

4.3.2 Dependence on the ratio between interior
and contour region

Clearly the performance of both algorithms (spatial-
and Laplace-correlation) depends on the number of
code-book vectors i.e. improves with a larger num-
ber of code-book vectors. However, the Laplace
method introduces an other degree of freedom into



Figure 8: Correlation as a function of the displace-
ment for different ratios of the number of code-book
vectors for interior (i) and contour region (c). The
position 0 corresponds to perfect docking of the
RecA monomer into the hexamer. For each dis-
placement the optimal rotation has been calculated.
It can be seen that the performance of the Laplace
method increases with the fraction of interior code-
book vectors.

the analysis, namely the ratio between the number
of code-book vectors assigned to the interior and
contour region respectively. To investigate the im-
pact of this choice we have repeated the monomer
docking for different ratios of interior and contour
code-book vectors.

Fig. 8 shows the corresponding results for the
20Å case. It can be clearly seen that the perfor-
mance of the algorithm improves with the fraction
of interior code-book vectors until all code-book
vectors are assigned to the interior region. That the
docking is strongly driven by the interior code-book
vectors seems to be particularly surprising since the
interior amounts only to≈30% of the total volume.
The reason for this unexpected behavior lies pre-
sumably in the fact, that the compact inner region
is easier to approximate than the “thin-walled” con-
tour region. Furthermore the contour of the single
monomer is certainly not expected to match per-
fectly to the contour of a monomer within the full
hexamer. However, one should note that this re-
sult does not indicate, that the distinction between
interior and contour becomes irrelevant. First, the
interior code-book vectors do confine the bound-
ary region “from inside” i.e. carry indirect informa-
tion about the contour region likewise. Second, and

more important, even in the absence of any contour
code-book vector does the low-resolution data carry
the sign-information about the contour-interior dis-
tinction. Hence, it still plays a role in the algorithm.

Finally, Fig. 1 in the appendix compares spatial-
and Laplace-based docking at 15Å resolution. For
the Laplace method the monomer was approxi-
mated by 70 code-book vectors,all assigned to the
interior region. Displayed is the absolute value
of the feedback-force. The Laplace-filter method
shows a much better pronounced minimum at the
original docking position (0,0).

4.3.3 Impact of the vector-quantization

The vector-quantization approximates the original
atomic structure by a small set of code-book vec-
tors. In our example the number of code-book vec-
tors corresponds to only 16% of the total number of
atoms. To examine the impact of this approximation
on Laplace filtered maps and the subsequent deter-
mination of the correlation one need to compare the
performance of our docking with a Laplace-filter al-
gorithm which does not use any data compression5

Fig. 2 in the appendix compares the results of
these two algorithms for the docking of the RecA
monomer. In all plots does the green tube corre-
spond to the optimal position, the blue tube to the
Laplace docking resultwithout vector-quantization
and the red tube to a resultwith vector-quantization.
In plot 2b the red tube is based on the Laplace corre-
lation with 70 interior code-book vectors while for
plot 2c 35 interior and 35 contour code-book vec-
tors were employed. Again, the Laplace-docking
with vector quantization improves with the frac-
tion of interior code-book vectors. Moreover, plot
2b shows an excellent agreement between the two
Laplace-filter based methods and the optimal dock-
ing position.

5 Summary

We have successfully implemented the Laplace-
filter method intoSenSitus for the docking of
atomic structures into low-resolution data. The
Laplace filter gives edge information i.e. introduces
the distinction between interior and contour region.

5Such a method is implemented into the algorithmic docking
tool CoLoRes (Contour-based Low-Resolution docking) which is
part of theSitus [16] package.



Tests show that this method significantly improves
the docking for resolution of 15̊A and below.

SenSitus supports the docking by VR tech-
niques which are especially well suited for the anal-
ysis of these highly complex macro-molecules. To
allow for force update rates of 1kHZ and above, as
required in VR-environments [10],SenSitus em-
ploys the vector-quantization method to approxi-
mate the structure data. The application of this
method for Laplace-filtered maps introduces the
question of how to deal with the sign-information
of the Laplace filter and how to share the code-
book vectors between interior and contour region.
Our investigation shows that the docking is strongly
driven by the interior code-book vectors. However,
even in the absence of any contour code-book vec-
tor for the structure data does the low-resolution
data carry the sign-information of contour and in-
terior regions. Hence, the contour information is
retained by the algorithm.
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[10] E. Chen and B. Marcus,Force feedback for
surgical simulation, Proceedings of the IEEE
86(3):524-530 (1998).

[11] T. Martinetz and K. Schulten,Topology Rep-
resenting Networks, Neural Networks 7, 507-
533 (1993).

[12] H. Ritter, T. Martinetz and K. Schul-
ten,Neural Computation and Self-Organizing
Maps: An Introduction, Addison-Wesley,
Massachusetts, revised and translated edition
(1992).

[13] T. Martinetz, S. G. Berkovich and K. Schulten,
“Neural Gas” Networks for Vector Quantiza-
tion and its Application to Time-Series Predic-
tion, IEEE Transactions on Neural Networks,
Vol. 4 No. 4 (1993).

[14] T. Martinetz and K. Schulten,A “Neural-
Gas” Network Learns Topologiesin Artificial
Neural Networks, T. Kohonen et al. (Editors),
Elsevier Science Publishing (1991).

[15] W. K. Pratt,Digital Image Processing, John
Wiley & Sons, New York 1991.

[16] W. Wriggers, R. A. Milligan and J. A. Mc-
Cammon,Situs: A Package for Docking Crys-
tal Structures into Low-Resolution Maps from
Electron Microscopy, J. Struc. Biol. 125, 185-
195 (1999).
http://situs.biomachina.org

[17] X. Yu and E. H. Egelman,The RecA hexamer
is a structural homologue of ring helicases
Nat. Struct Biol. (1997) 101.



 0

 50

 100

 150

 200

 250

 300

Feedback Force

−20 −15 −10 −5  0  5  10  15  20

x/ Å  

−30

−20

−10

 0

 10

 20

 30

y/
 Å

  

 0

 100

 200

 300

 400

 500

 600

Feedback Force

−20 −15 −10 −5  0  5  10  15  20

x/ Å  

−30

−20

−10

 0

 10

 20

 30

y/
 Å

  

Figure 9: Docking of the RecA monomer into the
hexamer at 15̊A resolution. Displayed is the abso-
lute value of the feedback-force in a cutout of the
xy-plane around the optimal docking position (0,0).
Shown are the results for the method based on the
spatial correlation (top) and for the Laplace-filter
method (bottom). Again, the Laplace method yields
the more pronounced maximum of the correlation
which results in a well defined local minimum of
the feedback force.

Figure 10: Docking of the RecA monomer into the
hexamer at a resolution of 15Å. In all three plots
does the green tube correspond to the optimal po-
sition, the blue tube to the Laplace resultwithout
vector-quantization (these two curves are almost in-
distinguishable) and the red tube to a resultwith
vector-quantization. a) The red tube is based on
the spatial correlation with 70 code-book vectors.
b) The red tube is based on the Laplace correlation
with 70 interior code-book vectors. c) The red tube
is based on the Laplace correlation with 35 interior
and 35 contour code-book vectors. While for a) and
c) the vector-quatization result is shifted by≈ 1Å
from the optimal position, does plot b) show an ex-
cellent agreement.
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