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Abstract

An improvement of the trajectory matching algorithm is presented, which is based on the use of the derivative of

trajectories and of the projection of experimental sinogram lines in the factor space determined by sinogram lines of

projections of a model. The algorithm performance is illustrated by use of different phantom structures, to show the

effect of symmetry on trajectory matching. A GroEL complex has also been reconstructed from both cryo-negatively

stained and unstained frozen-hydrated samples. The refinement of this structure has been carried out by the trajectory

matching algorithm as well as by conventional cross-correlation methods. Slight differences among the two results are

discussed. The improved trajectory matching algorithm, based on w2 distances, runs much faster than correlation

analysis and looks satisfactory as for the quality of the reconstructed structures. r 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

When a ‘complete set’ of projections of a three-
dimensional object is submitted to correspondence
analysis (CA) [1], the representative points in
factor space spread along a trajectory, i.e., along a
closed and complicated line. By complete set we

mean a collection obtained with some rule in
which the projecting directions are obtained by
varying an angle in the interval 0–2p. A set of this
kind is obtained in a random conical tilt experi-
ment [2] in which the varying angle is the azimuth.
Frank and Radermacher have published, for
projections of the ribosome obtained with this
technique, the first closed path of points in factor
space, though the observation reported was
limited to two main eigenvectors [3]. A similar
path has been reported for a single axis tilt series
[4] though in this case the trajectory remains open
owing to the missing wedge.
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We have recently published our finding about
trajectories obtained from another class of func-
tions, the sinograms [5]. Sinograms are a collection
of line integrals of 2D images computed, line by
line, by rotating stepwise from 0 to 2p a vector
orthogonal to the lines of integration. Given a set
of images, say TEM projections, their sinograms
are computed and CA is performed on the
collection of all line integrals, each regarded as
separated item. Each line becomes a point in factor
space and all points form a trajectory. The points
of a trajectory are found in the same sequence as
the lines in the sinogram. A whole set of sinograms
yield a set of trajectories.
Sinogram trajectories are alternative to CA of

whole images. In an experiment of three-dimen-
sional microscopy, sinograms must be obtained at
some point for different purposes: to align
equivalent images [6], to find common lines shared
by different projections [7,8] and to perform a
three-dimensional reconstruction via the Radon
transform [9]. On the other hand, these functions
can be conveniently computed by direct Fourier
methods [10]. A great advantage of CA carried out
on sinogram lines is the strong decrease of
computational complexity compared to an analy-
sis carried out in image- or pixel space. A detailed
analysis of this aspect is beyond the purpose of this
paper. We shall limit ourselves to compare the
dimensions of the matrices submitted to diagona-
lisation in the two cases. As an example, let us
consider a set of 4000 images (E212), 642 pixels in
size (212 pixels). Its CA would be based on a
212� 212 matrix, both in image- and pixel space.
Conversely, the matrix required in a sinogram line
analysis is only 64� 64 elements in size (212), that
is 212 times smaller. At first sight, such a dramatic
reduction of the problem dimension might appear
as a sacrifice of information. This is not true:
instead of obtaining points representing individual
images in factor space, we obtain trajectories
which exactly correspond to sinograms and hence
to images. Therefore, this kind of CA can greatly
alleviate the computational burden of multivariate
image statistics.
The advantages of using sinogram trajectories

rather than images is by no means limited to the
convenience in performing CA. Trajectories are

actually versatile entities whose potentialities
deserve to be explored in depth. Some applications
of the novel instrument have been already
demonstrated in a previous article [5]. We have
illustrated the power and low complexity of
common lines detecting algorithm and of a
determination of Euler angles of experimental
projections, based upon sinogram trajectories.
The former application is based on the fact that
the sinograms of two different projections share a
line and, correspondingly, their trajectories must
cross each other. This means that two points of
one either coincide or lie at narrow distance
from two points of the other. The second consists
of determining which experimental trajectory
matches at best with a computed counterpart, that
is, which of the former has all its points closest to
those of the latter. Both tasks require the evalua-
tion of distances among points in a w2 metric
whose dimensions are reduced to few main
eigenvectors. The advantage is that cross-correla-
tion algorithms are replaced by simple computa-
tion of distances.
In the present article we wish to present recent

improvements of the process of matching trajec-
tories of experimental- and computed projections.
The novel alignment strategy can be used in
exhaustive (or almost so) refinements of three-
dimensional structures of macromolecular assem-
blies. We shall present and discuss the results
obtained with phantom structures and a trajec-
tory-based refinement of the chaperonin GroEL
[11].

2. Sample preparation

The GroEL chaperonin (stock solution,
18mg/ml) was diluted in a buffer solution com-
posed of 20mM MOPS, 100mM KCl, 4mM
MgCl2, pH 7.4, to a final concentration of B1mg/
ml. GroEL particles were prepared for cryo-
electron microscopy and cryo-negative staining
as follows. Home-made holey carbon films were
used. The films were mounted on 200-mesh copper
grids, and a thin layer of PtC was sputtered on one
side of the grid. For cryo-electron microscopy, the
sample was immediately vitrified after blotting
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[12]. For cryo-negative staining, the sample was
applied on the staining solution droplet for 30 s.
The specimen was then removed and vitrified in
liquid ethane as described in [13].
The micrographs used in this work were

recorded at a temperature of �1801C and at a
calibrated magnification of � 52780 in a Philips
CM100 (LaB6 cathode source operated at 100 keV)
using a Gatan 626 cryo-holder (Gatan Inc.,
Warrendale, PA, USA).

3. The method

3.1. From sinogram to trajectories

Given a 3D object, like that in Fig. 1a, and a set
of n projections 64� 64 pixels wide, some of which
are shown in Fig. 1b, their sinograms (two-
dimensional Radon transforms) are represented
as arrays with 128 rows and 64 columns as in
Fig. 1c. The arrays are further organised, one
beneath the other, in an observation matrix X,
with 128� n rows and 64 columns (Fig. 1d). This
matrix is submitted to CA which consists of three
steps: (i) a covariance matrix C=XTNXM (N and
M being diagonal normalising matrices) is com-
puted, with 64� 64 coefficients. Note that if M

and N are omitted (no normalisation), the
covariance matrix is the same as used in the
principal component- or Karhunen–Loewe trans-
formation [14,15]; (ii) the secular equation
CU=UK is solved, U being an orthonormal

c
Fig. 1. From a structure model to sinogram trajectories. The

three-dimensional model (aÞ yields the set of projections 1yn

shown (bÞ; sizing 64� 64 pixels and their sinograms, shown (cÞ;
which are numerical arrays sizing 64 columns� 128 rows (rows

span the angular range 0–2p). In (dÞ an array is formed by

placing sinograms 1,y,n one beneath the other. This large

array with 64 columns and 128n rows is the observation matrix

X which, once normalised and pre-multiplied by the transpose

X
T, yields an inertial tensor 64� 64 coefficients wide used

to solve the secular equation. Different trajectories, one

per sinogram and occurring in the same order as do the

sinograms in X, are observed in factor space. Their points

occur in the same sequence as the lines in a sinogram. A

trajectory is shown (e), in a representation limited to three main

eigenvectors.
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matrix of eigenvectors which specify the directions
of inertial axes of the line distribution and K being
a diagonal matrix of eigenvalues representing the
inertia associated with the eigenvectors; (iii) U is
used to operate a ‘rotation’ of all vectors of NXM

along the directions prescribed by eigenvectors.
There is a rapid decrease of inertia along the
diagonal of K so that significant features of images
or of sinogram lines are adequately represented in
a space of the first few eigenvectors. The number
of eigenvectors considered is such that the corres-
ponding eigenvalues encompass not less than 90%
of total inertia. In our experience this reduces to

6–10 the dimensions of factor space. Hence, a
trajectory can be viewed in this low-dimensional
space and, if one so wishes, converted back to its
sinogram and to the image by omitting all
eigenvectors containing featureless information.
This form of statistical filtering has been already
investigated in the case of whole images [16]. An
example of a trajectory represented in the space of
three main eigenvectors is shown in Fig. 1e.
In Fig. 2 three different analytical phantoms are

shown, possessing symmetry C1, D4 and O. The
group orders are 1, 8 and 24, respectively, that is
the phantoms contain 1, 8, and 24 equal

Fig. 2. The three main columns of images show, at the top, three different analytical phantoms with symmetries C1; D4 and O: Beneath
each of the three models are, at left, some noise-free projections accompanied by their trajectories represented in the space of two main

eigenvectors. Two versions of trajectories are shown: original and, in rightmost columns, after derivation.
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asymmetric units replicated according to the group
symmetry. Fig. 2 shows the three phantoms and,
beneath each of them, some of their projections
and of the trajectories obtained. As can be seen, as
the group order increases trajectories of higher
complexity are obtained. Owing to the presence of
symmetry, the same projection can be obtained
along different directions so that a given line is
present in multiple copies in a sinogram. This
introduces crossing points along the trajectory,
and some problems arise in determining the line
shared by two sinograms [5]. It may, however,
become an advantage in a projection matching
process.

3.2. The trajectory matching

Projection matching [17] is the process by which
Euler angles are assigned to experimental images.
It is an iterative process, commonly performed by
cross-correlating experimental data with projec-
tions of an updating structural model and involves
the use of a two-dimensional Fourier algorithm. In
the novel approach, the trajectories of experimen-
tal images are compared with those of the model,
in order to assess which matches which. The
matching is evaluated by computing a distance
between two trajectories, defined as the sum of
point-to-point distances in factor space. Note that
rotating a projection corresponds to an angular
shift of the sinogram and of the trajectory, i.e., to a
cyclic permutation of line indices. Given two
trajectories, if point 1 in the first is near to point
m in the second, point 2 will be near to point
m+1 and so on. Thus, we need to determine the
cyclic permutation which minimises the sum of
distances. A w2 map of distances of points of a
trajectory from all points of the other is first
obtained. This map is equivalent to the sinogram
correlation [8] whose values represent all cross-
correlation maxima between lines. The sum of a
diagonal line of this map corresponds to a sum
of point-by-point distances, related to a given
shift m. The index corresponding to the minimal
sum determines the mutual rotation of the two
maps. Eq. (1) defines the distance between two
trajectories Sði; jÞ and Tði; jÞ; where i spans the
number N of lines and j the dimensions of factor

space (J):

dS�T ¼ min

�X
i

�X
j

ðSi;j � Tiþm;jÞ
2

�1=2�
: ð1Þ

The trajectory matching requires that each
experimental trajectory be compared with all
computed ones to determine the minimum dis-
tance. Once this is done, an experimental projec-
tion is eventually assigned with the two Euler
angles used to project the model and with a third
angle, an in-plane rotation, obtained from the
index m:
If a whole set of sinogram lines of computed and

experimental projections are submitted to CA, two
main problems arise, which were illustrated in our
previous article. The first is that the two clouds of
experimental and computed trajectories are sepa-
rated along the first main eigenvector. The other
effect is that experimental trajectories are smaller
than their computed counterpart. A preliminary
shift and scaling operation was therefore devised
to make the comparison possible. This solution
was a bit naive. In the method exposed below both
effects are avoided in a more rigorous way.

3.3. The new trajectory matching algorithm

A remedy for the separation of the two clouds of
trajectory consists of carrying a CA on the lines of
sinograms of computed projections alone, to
obtain a matrix Uc of eigenvectors and a diagonal
Kc matrix of eigenvalues. The lines of experimental
sinograms are projected in this new space. The
equation to project the ith line si of a new
sinogram in the factor space and to obtain the
new co-ordinate Sij [18] is

Sij ¼
1

Ms

ffiffiffiffi
lj

p X
k

sikPkj ; ð2Þ

where Sij is the jth co-ordinate of line Si; sik is the
kth pixel of line si whose total sum is Ms; lj is
the jth eigenvalue in the matrix Kc and Pkj are the
pixel coordinates in the line space.
Still, experimental trajectories obtained in this

way are smaller than their computed counterparts.
The problem is solved by comparing the deriva-
tives rather than the originals of both types of
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trajectories. Derivatives are independent from the
position of the origin and from the relative
dimensions of trajectories though they preserve
the shape-related information. Consider the length
of each segment of a trajectory S:

ci ¼ jjSi � Si�1jjJ ¼ ð
X

j

ðSij � Si�1;jÞ
2Þ1=2

the discrete derivatives, to be computed for each
significant eigenvector, will be of the type:

S0
ij ¼

Sij � Si�1;j

ci

:

Derivatives S0 are defined in the same space as
trajectories S and are used to compute the
distances the same way as is done for trajectories.
Some examples of derivatives of experimental
trajectories are shown in Fig. 2. This treatment
allows one to substantially overcome the problems
mentioned above.

4. Results

4.1. Numerical simulations

A set of 1000 projections with random orienta-
tions were computed for each phantom of Fig. 2.
The images were corrupted, down to S=N ¼ 1;
with Gaussian noise (Fig. 3, top row) and with
noise digitised from featureless areas of micro-
graphs of ice embedded samples (Fig. 3, bottom

row). The sets of reference projections had viewing
directions homogeneously distributed in the in-
dependent part of the unit sphere. Four hundred
and twenty-two projections spaced by 101 along
two Eulerian angles were computed for the
phantom with symmetry C1; with the third angle
set at random. Analogous projections were ob-
tained for phantoms with symmetries D4 and O;
223 and, respectively, 74 references spaced by 51
were obtained in the independent angular range
dictated by symmetry. The model reconstruction
was performed in all cases with a fast and accurate
algorithm based on the Radon transform [9].
In order to compare the relative performances,

the projection matching was carried out using both
trajectory-based and cross-correlation algorithms
[6]. We have compared the Euler angles of
computed projections with those determined by
the two methods. Table 1 gives the results
obtained. The accuracy attainable is related to
the angular spacing of viewing directions of the
reference projections; the data in the table indicate
the percentage of noisy projections correctly
aligned within one or two sampling steps of the
independent part of the unit sphere. The discre-
pancy [19] of reconstructed phantoms with respect
to the models, reported in the Table 2 as rmsd, is
essentially identical for both algorithms. As for the
angle determined, however, the conventional
cross-correlation method looks a bit more accurate
but it takes much a longer time (E6� ).

4.2. Trajectory matching with actual experimental

data

Trajectory matching has been tested on a real
structure, obtained from ice-embedded samples of
the GroEL protein complex [11]; the results have
been compared with those obtained with a
standard correlation algorithm. Two set of projec-
tions, stained [13] and unstained, were digitised
with about 1600 molecules per set. Some of them
are shown in Fig. 4. Each type of images was
divided into two subsets of about 800 images. The
performances of the methods were evaluated by
Fourier shell correlation (FSC) [20] to estimate the
cross-resolution of two independently refined
models.

Fig. 3. Typical projections of the three phantoms shown in

Fig. 2, corrupted with noise (S=N ¼ 1). Top row: images

corrupted with Gaussian noise. Bottom row: images corrupted

with noise digitised from structure-free portions of micrographs

of ice embedded phantoms.
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These protein complexes lay essentially in two
preferred orientations. Classification and class
averages evidenced an almost exclusive presence
of top and side views. The images were well
centred during the classification process. From

these two views a preliminary model for projection
matching was obtained. This model and the first
refinements have been projected at regular steps of
51 in viewing direction angles to produce the data
set for classification. In the last steps of refinement
a different criterion was adopted. Based upon the
Euler angle already assigned to each projection, a
set of close viewing directions have been computed
at steps of 11 and the relative projections obtained
from the refining model. Their sinogram lines were
projected on the lines of the ‘classification set’
according to Eq. (2) and a set of reference
trajectories spaced by 11 were generated. There-
fore, each trajectory coming from experimental
image was compared with computed trajectories
up to 11 of angular resolution. A similar approach
was adopted also for the refinement by correlation;
in this case, the algorithm was able to take into
account also shift misalignments.
Stained molecules were quickly oriented, in

about 5–6 cycles, by both algorithms. Sections a

Table 1

Percentage of angles correctly assigned to 1000 analytical random projections of phantoms by correlation- and trajectory-based

algorithms

1 Phantom C1 D4 O

2 Noise type Gauss Exp. Gauss Exp. Gauss Exp.

3 Accuracy 101 61 101 61 51 31 51 31 51 31 51 31

4 Correl. (%) 100 83 96 68 100 82 96 68 100 84 99 85

5 Traject. (%) 100 87 93 62 100 81 91 58 100 84 99 75

6 Correl.time 6 h 30’ 3 h 300 1 h 100

7 Traject.time 1 h 330 3000 130

Row 1: symmetry of the phantom; row 2: type of noise; row 3: criterion of accuracy, i.e., maximum errors accepted for correct

assignments; row 4 and 5: % of orientations correctly determined within the angular spacing of row 3 with use of correlation- and,

respectively of trajectory based algorithms. Row 6 and 7: elapsed times for correlation and, respectively, trajectories.

Table 2

Discrepancy between original phantoms and models reconstructed from 1000 noisy projections according to the Euler angles detected

by trajectories and correlation algorithms

1 Phantom C1 D4 O

2 Noise type Gauss Exp. Gauss Exp. Gauss Exp.

3 Correl. 0.125 0.170 0.064 0.085 0.154 0.157

4 Traject. 0.122 0.172 0.068 0.086 0.158 0.163

Row 1: symmetry of the phantom; row 2: type of noise; row 3,4: discrepancy for correlation and, respectively, trajectories.

Fig. 4. Some images digitised from micrographs of GroEL

preparations. (a) Molecules in cryo-negatively stained prepara-

tions; (bÞ molecules from unstained preparations.

P.L. Bellon et al. / Ultramicroscopy 93 (2002) 111–121 117



and b of Fig. 5 show the models refined by
correlation and by trajectory matching, respec-
tively (trajectories limited to 6–7 eigenvectors).
Much slower convergence, with both methods, was
observed for unstained molecules. Using a pre-
liminary model obtained from unstained samples,
10 cycles were necessary to reach good FSC
agreement between the results obtained from two
subsets (see Fig. 5c and d). Starting from the
refined model obtained from stained samples,
however, convergence arrived quickly. The results
are shown in Fig. 5e and f. This behaviour suggests
that contrast enhancing by staining may offer a
substantial help in reconstructing difficult mole-
cules. The structures shown in Fig. 5 yield the FSC
diagrams of Fig. 6, which indicate a spatial
resolution of about 2.2 nm, in agreement with the
position of the first zero of the contrast transfer
function (CTF) in the micrographs. Slight differ-
ences among the reconstructed molecules are
discussed below.

5. Discussion

In the present study we are introducing a
matching among derivatives of experimental- and
computed sinogram trajectories. A key feature of
the method is that experimental trajectories are
obtained by projecting experimental sinogram
lines in a factor space defined for a noise-free
model. Experimental trajectories, whatever ob-
tained, are smooth and well-behaving curves due
to the fact that the image noise is reduced by line
integration in the process of obtaining sinograms.
Additional smoothing is also possible by applying
a moving average to the trajectory points before
computing the derivatives.
The two applications of trajectories presented in

our previous study were dealing with common line
detection and projection matching. Both applica-
tions were tested with use of phantom structures.
In this paper we have tested the behaviour of
trajectories as symmetry increases and observed

Fig. 5. Three-dimensional models of GroEL obtained by refining the projection angles of sets of 1600 projections. Top row: results of

refinement by correlation matching. Bottom row: results of refinement by trajectories. Models (a) and (b) are obtained from cryo-

negatively stained samples. Models c and d are obtained from unstained samples in a refinement starting from a preliminary

reconstruction from top and side views selected within the unstained set. Models (e) and (fÞ result from unstained samples with the

refinement based upon models (a) and (b), respectively.
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that their complexity grows up as the group order
increases. Our experiments indicates that symme-
try has no adverse effects in a trajectory matching

algorithm, especially if derivatives are adopted.
The two tables indicate that the percentage of
viewing directions correctly determined does not
depend upon the symmetry. Moreover, the results
are nearly equivalent to those of correlation
algorithms. Thus, symmetry does not represent a
problem in matching processes: the larger the
complexity, the probability of wrong matching
diminishes.
With trajectory matching we nicely reconstruct

all phantoms, so as to obtain results visually
indistinguishable from the original. As for dis-
crepancy indices, which represent unbiased error
estimates, it is still true that cross-correlation is a
bit better than trajectory matching. This is not
surprising since the accuracy of the novel instru-
ment needs to be refined further. What looks
appealing is computation time which is reduced to
one-sixth of that required by cross-correlation.
The overall performance of trajectory matching

has been further evaluated in a real experiment
aiming at reconstructing a protein complex from
ice embedded samples. In this case the experiment
consisted of an exhaustive assignment of viewing
directions down to 11 of accuracy. The quality of
the results have been judged on the basis of the
FSC between the models obtained from two
independent subsets of projections. The FSC
diagrams indicate that the agreement obtained by
trajectory matching is equivalent or even better
than that obtained by correlation. This is a
valuable indication, FSC being the commonly
adopted criterion to assess the correctness of
reconstructed models [21]. The GroEL molecule
has been reconstructed from two different pre-
parations yielding high- and low signal-to-noise
ratio (S/N) images. As expected, both methods
converge quickly in the case of high S/N images
obtained from cryo-negatively stained prepara-
tions and slowly in other cases. The models
reconstructed from high- and low S/N images are
somehow different, with both methods, the differ-
ence being more pronounced for trajectory match-
ing. The model reconstructed from cryo-negatively
stained samples by trajectory matching and
correlation look slightly different in spite of similar
FSC diagrams (Fig. 5a and b). On the contrary,
unstained samples yield quite similar refined

Fig. 6. FSC diagrams for reconstructed models of GroEL

presented in Fig. 5. (a) analysis of cryo-negatively stained

samples; (b) analysis of unstained samples in a refinement

starting from a preliminary reconstruction from top and side

views selected within the unstained set; (c) analysis of unstained

samples with the refinement based upon models created from

stained samples. The diagrams show that the resolution

attained in all cases is about 2.2 nm, corresponding the first

zero of the CTF.
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models (Fig. 5c and d). The difference between the
two models from stained molecules is worth being
investigated further. One hypothesis deals with a
possible heterogeneity of the preparation. We have
not attempted to discriminate between different
classes within the same type of view (see e.g. [22])
so that all molecules selected have been used for
the reconstruction. It might be possible that the
two algorithms have found a different solution
depending upon the type of molecules which drove
the process.
Fig. 5e and f shows the models quickly obtained

from unstained molecules, using the reconstruc-
tion obtained from stained samples. Interestingly,
the reconstruction obtained with trajectories (5f) is
almost indistinguishable from that shown in 5d,
refined from a starting model coming from
unstained images. On the contrary, the results of
correlation (5e) seems to preserve some features of
the model (5a). After iterated cycles of projection
matching the reconstruction of Fig. 5e converges
to 5c. This might indicate that trajectory matching
is less sensitive to the starting model, being mostly
driven by the symmetry properties of original
projections. This could be an attractive peculiarity
to be tested in the reconstruction of molecular
complexes slightly modified with respect to already
known structures.
An aspect not fully investigated yet deals with

the reliability of trajectories in the presence of
significant displacements of projections from a
common origin. At present, trajectory matching
works only if projections are reasonably well
centred. This condition should be fulfilled if the
images require preliminary classification, as was
the case for the GroEL data. Otherwise the
projections must be shift-aligned in advance.
It has been shown that also standard alignment

algorithms work more efficiently if the shift and
rotation processes are divided. This means that the
images should be first centred and then rotation-
ally aligned by use of angular correlation [23], in
agreement with the strategy adopted here. Our
experience suggests that in images 64� 64 pixels
wide, displacements by 1–2 pixels from the
common origin is not prejudicial in the first stages
of a refinement. A low complexity alignment based
on sinograms [6] could be used from cycle to cycle

of refinement before entering the CA step. In this
way, after a coarse image alignment, sinograms
and sinogram lines become the only functions used
throughout the entire analysis, even in the
reconstruction step if the Radon transform meth-
od [9] is used. In any event, a strategy to manage
the effect of little shifts on the trajectory shapes is
presently under study.

6. Conclusions

Exhaustive refinement of molecular models with
use of trajectories described by sinogram lines in
factor space, proves to be an attractive alternative
to cross-correlation methods as for speed and
accuracy, even though some aspects of the novel
technique need to be further investigated. The
main advantage of this strategy is represented by a
time gain so that, at present, a trajectory-based
refinement might be carried out exhaustively, with
only a final step left to the time-consuming
correlation algorithm. The method, demonstrated
here with simulations and with a real molecular
model, looks interesting mainly because it repre-
sents a frontier advancement in the applications of
correspondence analysis. This multivariate statis-
tical method, till now used in EM for mere image
classification, proves more and more to be a far
reaching tool in the process of creation of
preliminary models and in refining their recon-
struction.
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