Nuclear Magnetic Resonance

For students of HI 6001-125
"Computational Structural Biology"

Willy Wriggers, Ph.D.
http://biomachina.org/courses/structures/06.html

Introduction / Medical Applications

NMR History

1946 Bloch, Purcell	First nuclear magnetic resonance
1955 Solomon	NOE (nuclear Overhauser effect)
1966 Ernst, Anderson	Fourier transform NMR
1975 Jeener, Ernst	Two-dimensional NMR
1985 Wüthrich	First solution structure of a small protein
	from NOE-derived distance restraints
\rightarrow NMR is about 25 years younger than X-ray crystallography	
1987/8	3D NMR + 13C, 15N isotope labeling
$1996 / 7$	New long-range structural parameters:
	- residual dipolar couplings (also: anisotropic diffusion)
	- cross-correlated relaxation
	TROSY (molecular weight > 100 kDa)
2003	First solid-state NMR structure of a small protein
Nobel prizes	
1944 Physics	Rabi (Columbia)
1952 Physics	Bloch (Stanford), Purcell (Harvard)
1991 Chemistry	Ernst (ETH)
2002 Chemistry	Wüthrich (ETH)
2003 Medicine	Lauterbur (Urbana), Mansfield (Nottingham)

Spin and Magnetic Moment

Nuclear Magnetic Moment

Magnetic Moment

Bar magnet e.g. proton

Effect of External Field Zero External Magnetic Field

Point in random directions.

Effect of External Field
 Strong External Magnetic Field

Some line up. Some line down. Just the majority line up. Out of 1 million ~ 500,002 UP - 499,998 DOWN.

Magnetic Resonance Imaging (MRI) Hydrogen Nucleus

* The proton.
* Biggest nuclear magnetic moment of any stable nucleus.
* Most abundant nucleus in the human body.
* Water and lipid (fat).
* MRI gives a distribution of water and fat in the patient.

Magnetic Resonance Imaging (MRI) Flipping Spins

© 2003, Peter Cole http://www.liv.ac.uk/~iop/PTC/TechMediclmag.ppt

Magnetic Resonance Imaging (MRI)
 Larmor Frequency

Rate of 'wobbling' depends on big magnetic field strength.

$$
\omega=\gamma \mathbf{B}
$$

$\gamma=$ gyromagnetic ratio (42.57 MHz per Tesla for protons)

1 Tesla $\approx 10,000 \times$ Earth's magnetic field.

Magnetic Resonance Imaging (MRI)

Frequency Encoding of Spatial Dimensions

No gradient

All 3 'see' the same \mathbf{B}
\& wobble at same rate

Magnetic Resonance Imaging (MRI)

Nuclear Relaxation and Image Contrast

Magnetic Resonance Imaging (MRI) Axial Brain Images

T_{1}-weighted

T_{2}-weighted

Proton density weighted

MRI Scanner

Big superconducting magnet (~ 1.5 tesla).

Gradient coils.
Radiofrequency coils.

Why Biomolecular NMR?

- Structure determination of biomacromolecules
\rightarrow no crystal needed, native-like conditions
\rightarrow nucleic acids: difficult to crystallize, affected by crystal packing
- Characterization of dynamics and mobility, enzyme kinetics, folding
\rightarrow picosecond to seconds time scales
\rightarrow... with residue, e.g. amino acid, resolution !!!
- Ligand binding and molecular interactions in solution
- molecular weight: X-ray: >200 kDa, NMR < 50-100 kDa, 900 kDa!?
- \rightarrow NMR and X-ray crystallography are complementary

	Proteins	Protein/DNA Protein/RNA	DNA/ RNA	Carbo- hydrates
X-ray	17821	857	688	14
NMR	2784	95	547	4

PDB Holding List 7-Oct-2003

Why Biomolecular NMR?

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Basic Physics Concepts

Angular Momentum

A rotating object possesses angular momentum

Right hand rule

Angular Momentum is Quantized

Example: Rotational energy of a molecule
At the level of atoms and molecules, only specific rotational states are "allowed"

Diatomic molecule

Spin Angular Momentum

- really an intrinsic property (not due to rotation)
- is quantized
- particles with spin I have 2I + 1 sublevels (degenerate without B or E field)
- bosons = particles with integer spin
- fermions = particles with half-integer spin
- arises from quantizing the electromagnetic field (Dirac)

Neutrons and Protons

3 quarks, stuck together by gluons

Nuclear Spin Energy Levels

no magnetic field

Ground state nuclear spin ~ empirical property of each isotope

Determining Spin of Isotopes

mass number
odd
even
even
atomic number (Z) I NMR detectable
even or odd

$1 / 2,3 / 2,5 / 2 \ldots$	yes
0	no
$1,2,3 \ldots$	yes

Possible number of spin states =2l+1
${ }^{1} \mathrm{H}$:
$\mathrm{I}=1 / 2$
$2(1 / 2)+1=2$
$\mathrm{m}= \pm 1 / 2$
${ }^{14} \mathrm{~N}$:
$\mathrm{I}=1$
$2(1)+1=3$
$m=-1,0,1$

NMR-Active Nuclei in Proteins

Naturally abundant
1 H , spin $1 / 2$
31P, spin $1 / 2$
Enriched via bacterial expression (isotope labeling)

2H, spin 1
13C, spin $1 / 2$
15 N , spin $1 / 2$

The Gyromagnetic Ratio

For spin angular momentum of the nucleus,

$$
\overrightarrow{\boldsymbol{\mu}}=\frac{\boldsymbol{g}_{N} \boldsymbol{\mu}_{N} \vec{I}}{\hbar} \quad \begin{aligned}
& \text { where } g_{N} \text { is the nuclear } \\
& g \text {-factor and } \mu_{N} \text { is the } \\
& \text { nuclear magneton }
\end{aligned}
$$

Defining the "gyromagnetic ratio" of μ and I :

$$
\frac{g_{N} \mu_{N}}{\hbar}=\gamma
$$

the relationship between angular momentum and magnetic moment becomes:

$$
\vec{\mu}=\gamma \vec{I}
$$

Hence, the angular momentum and magnetic moment vectors associated with nuclear spin are pointed in the same direction and are related by a constant.

Gyromagnetic Ratio, γ

Spin angular
momentum

Magnetic Energy

$$
E=-\vec{\mu} \cdot \vec{B}
$$

- Magnetic energy depends on the relative orient

Low energy

High energy

Angular Momentum and Projection Quantum Number

Magnitude of the angular momentum vector is fixed by the value of the nuclear spin quantum number

$$
|\vec{I}|=\hbar \sqrt{I(I+1)}
$$

and that the z -component of the angular momentum vector is given by

$$
I_{z}=\hbar m
$$

where m is the magnetic quantum number: $m=(-\mathrm{I},-\mathrm{I}+1, \ldots, \mathrm{I}-1, \mathrm{I})$
I_{z} has $2 \mathrm{I}+1$ possible values

Example

Figure 1.1 Angular momentum. The angular momentum vectors, \mathbf{I}, and the allowed z components, I_{z}, for (a) a spin- $\frac{1}{2}$ particle and (b) a spin-1 particle are shown. The location of I on the surface of the cone of precession cannot be specified because of quantum-mechanical uncertainties in the I_{x} and I_{y} components.

Effect of an External Magnetic Field

- No magnetic field:
$(2 I+1)$ spin states are degenerate (i.e. they all have the same energy).
- With magnetic field:

Spin states separate in energy (larger values of m have lower energy)

- The separation of energy levels in a magnetic field is called the nuclear Zeeman effect. The energy of a spin state is given by:

$$
E=-\vec{\mu} \cdot \stackrel{\rightharpoonup}{B} ; \vec{\mu}=\gamma \vec{I}
$$

Magnetic Quantum Number and Interaction Energy

$$
|\overrightarrow{\mathrm{I}}|=\hbar \sqrt{\mathrm{I}(\mathrm{I}+1)} ; \quad I_{z}=\hbar m
$$

Thus, the discrete values of I_{z} are always smaller than $|\mathbf{I}|$. The minimum energy occurs when the projection of μ onto \mathbf{B} is the greatest. Hence, the energies of the m allowed spin states are proportional to their projection onto \mathbf{B}_{0} :

$$
E_{m}=-m B_{o} \gamma \hbar
$$

where:

Em	$=$	Energy of the state
m	$=$	magnetic quantum number
Bo	$=$	magnetic field strength
γ	$=$	gyromagnetic ratio
\hbar	$=$	Planck's constant $/ 2 \pi$

Degeneracy Lifted

Depends on

1) the type of nucleus (γ)
2) the spin state (m)
3) strength of magnet $\left(B_{0}\right)$
selection rule for transitions between energy levels:
$\Delta m= \pm 1$
For spin $1 / 2 \quad \Delta \mathrm{E}=-[(-1 / 2)-(+1 / 2)] \mathrm{B}_{0} \gamma \hbar=\mathrm{B}_{\mathrm{o}} \gamma \hbar$
Planck's Law $\Delta \mathrm{E}=\mathrm{h} \nu=\hbar \omega=\mathrm{B}_{\mathrm{o}} \gamma \hbar$
from above

Energy Levels and Populations

The Boltzmann equation tells us the population of a state if we know its energy:

Boltzmann distribution: $\frac{N(\alpha)}{N(\beta)}=e^{\frac{2 \mu B_{0}}{k T}} \sim 1+\frac{2 \mu \mathrm{~B}_{0}}{k T}=\frac{1.00001}{1}$

- In an ensemble of spin $1 / 2$ nuclei the α (up) and β (down) energy levels are populated according to Boltzmann statistics.
- This leads to a small effective magnetization along the \boldsymbol{z}-axis $\left(B_{0}\right)$.
- No x - or y-magnetization is observed since the spin vectors are not phase coherent, i.e. they precess independent from each other around B_{0} and their x, y components thus average to zero. © 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Interaction with RF Radiation

Electromagnetic Radiation

Electromagnetic radiation is composed of magnetic and electronic waves:

From: R.S. Macomber (1988) NMR spectroscopy: Essential Theory and Practice

- The frequency is defined as $v=1 / t_{0}$, where t_{0} is the peak-to-peak time.
- A wave travels λ (distance) in t_{0}, so that the speed of the radiation (c, the speed of light, $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) is defined as:

$$
c=\frac{\lambda}{t_{o}}=\lambda v \quad \therefore \text { wavelength and frequency are inversely related }
$$

Electromagnetic Radiation

Radiofrequency energy ($\Delta \mathrm{E}$ for nuclear spin state transitions):
$\lambda=10^{11}$ to $3 \times 10^{7} \mathrm{~nm}$
$v=10^{6}$ to $10^{10} \mathrm{~Hz}$

By setting the frequency of electromagnetic radiation (v, or equivalently ω) to the resonance condition, transitions between nuclear spin states can be induced
(i.e. one can do NMR spectroscopy!).

The Electromagnetic Spectrum

$$
\text { NMR resonance frequency: } \omega=\gamma B_{0}
$$

Resonance $\left(\omega_{0}\right), \mathrm{B}_{\mathrm{o}}$ and γ

Resonance (Larmor) frequency for exciting nuclear spin transition:

$$
\underbrace{\omega_{0}=\mathrm{B}_{0} \gamma}_{B_{0} \rightarrow} \begin{aligned}
& \Delta \mathrm{E}=\hbar \omega_{0} \\
& \omega_{\mathrm{O}}=\mathrm{B}_{\mathrm{o}} \gamma
\end{aligned}
$$

Bulk Magnetization

The magnetic moment (μ) is a vector parallel to the spin angular momentum. The gyromagnetic ratio (γ) is a physical constant particular to a given nucleus.

Unfortunately, the vast majority of the magnetic moments cancel one another. The "Boltzmann excess" in the α state add together to create bulk angular momentum and magnetization.

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Bulk Magnetization

Individual magnetic moments:

Bulk Magnetization:

$$
\vec{M}=\sqrt{\pi}
$$

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Classical Motion of a Magnet

Classical physics tells us about the motion of a magnet in a magnetic field

The change in angular momentum per unit time is torque (τ)

This precession is very similar to the motion of a spinning gyroscope or top in a gravitational field

$\mathbf{L}(\mathrm{t})$ is the gyroscope's angular momentum, \mathbf{r} its radius from the fixed point of rotation, m its mass and \mathbf{g} the force of gravity.
(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Reminder: Cross Product

$$
\vec{a} \times \vec{b}=a_{x} a_{y}
$$

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Direction of Precession

Classical Motion of a Magnet

The equations we will be further developing this lecture are known as the "Bloch Equations". They were initially described by Felix Bloch who shared the Nobel prize in Physics in 1952 for this work.

Case 1: At equilibrium in a magnet: $\frac{d \vec{M}}{d t}=0$ Case 2: After a radiofrequency pulse moves \vec{M} away from equilibrium:

$$
\begin{aligned}
& M_{x}=M_{\perp} \cos \omega_{0} t \\
& M_{y}=-M_{\perp} \sin \omega_{0} t \\
& \left.M_{\perp}=\sqrt{\left(M_{x}^{2}+M_{y}^{2}\right.}\right)
\end{aligned}
$$

This describes precession in the x - y plane, but there is no mechanism to return the magnetization back to equilibrium along z.
(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Bloch Equations

In order to allow the system to return to equilibrium, Felix Bloch made the following modifications to the basic equation

Bloch Equations

$$
\frac{d \mathbf{M}(t)}{d t}=\mathbf{M}(t) \times \gamma \mathbf{B}(t)-\mathbf{R}\left(\mathbf{M}(t)-M_{0}\right)
$$

This equation is easiest to understand broken into its matrix components:

$$
\frac{d M_{z}(t)}{d t}=\gamma\left[M_{x}(t) B_{y}(t)-M_{y} B_{x}(t)\right]-\frac{M_{z}(t)-M_{0}}{\mathrm{~T}_{1}}
$$

$$
\frac{d M_{x}(t)}{d t}=\gamma\left[M_{y}(t) B_{z}(t)-M_{z} B_{y}(t)\right]-\frac{M_{x}(t)}{\mathrm{T}_{2}}
$$

$$
\frac{d M_{y}(t)}{d t}=\gamma\left[M_{z}(t) B_{x}(t)-M_{x} B_{z}(t)\right]-\frac{M_{y}(t)}{\mathrm{T}_{2}}
$$

Magnetization along the z -axis

Magnetization along the x -axis

Magnetization along the y-axis

Bloch Equations in the Rotating Frame

Substituting $\Delta \omega=-\gamma B_{0}-\omega_{\text {rf }}$ (where $B_{0}=B_{z}$ and is not time-dependent) into the Bloch equations yields:

$$
\frac{d M_{z}(t)}{d t}=\gamma\left[M_{x}(t) B_{1}^{y}(t)-M_{y} B_{1}^{x}(t)\right]-\frac{M_{z}(t)-M_{0}}{\mathrm{~T}_{1}}
$$

$$
\begin{aligned}
& \mathrm{B}_{1} \text { refers to the rf } \\
& \text { field in the rotating } \\
& \text { frame }
\end{aligned}
$$

$$
\frac{d M_{x}(t)}{d t}=-\Delta \omega M_{y}(t)-\gamma M_{z} B_{1}^{y}(t)-\frac{M_{x}(t)}{T_{2}}
$$

$$
\frac{d M_{y}(t)}{d t}=\gamma M_{z}(t) B_{1}^{x}(t)+\Delta \omega M_{x}-\frac{M_{y}(t)}{\mathrm{T}_{2}}
$$

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Bloch Equations

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Populations of Spin States and RF Pulses

90° and 180° pulses

From: J. Cavanagh et al. (1996) Protein NMR spectroscopy

Precession and Relaxation

In most NMR experiments, the pulses are short and the relaxation times are relatively long. We mainly worry about relaxation after the pulses are applied.

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Longitudinal Relaxation (T_{1})

- first order rate process

$$
\begin{aligned}
& \frac{d M_{z}(t)}{d t}=\frac{\left(M_{o}-M_{z}(t)\right)}{T_{1}} \\
& M_{z}(t)=M_{o}-\left(M_{o}-M_{z}(0)\right) e^{-t T_{1}}
\end{aligned}
$$

$M_{o}=$ total magnetization
$M_{z}(0)=$ magnetization along the z axis at $t=0$

Longitudinal Relaxation (T_{1})

-Incoherent molecular fluctuations on the order of the Larmor frequency - T_{1} has a field dependent inflection point -Historically called spin-lattice relaxation (heat lost to the surroundings)
 -In NMR this is known as longitudinal relaxation due to our frame of reference

Usual experiment to measure T_{1} : Inversion-Recovery

Measured signal

$$
M_{z}(t)=M_{0}\left(1-2 e^{-\tau / T_{1}}\right)
$$

Longitudinal Relaxation (T_{1})

Longitudinal Relaxation (T_{1})

Putting the sample into a magnetic field
Or after the magnetization is in the $x-y$ plane

$M_{z}(t)=M_{\text {equil }}\left(1-e^{-t / T_{1}}\right) \rightarrow$ One has to wait $\sim 5 \mathrm{xT}_{1}$ to get the signal back
-A lot of time in conventional NMR is spent waiting for relaxation. -Initial experiments to observe NMR signals were hampered by not knowing T_{1}

Transverse Relaxation (T_{2})

Relaxation back to equilibrium

Transverse Relaxation (T_{2})

Inhomogeneous broadening: variations in the macroscopic magnetic field
-Instrument limitations

- Magnetic susceptibility

Homogeneous broadening: fluctuating microscopic magnetic fields

- Molecular dynamics and spin-spin interactions \rightarrow more details later
-Chemical exchange
-Historically called spin-spin relaxation
-In NMR we call it transverse relaxation \rightarrow loss of signal in the $x-y$ plane

Transverse Relaxation (T_{2})

Transverse Relaxation (T_{2})

$$
M_{\chi}(t)=M_{o} \cos \left(\omega_{o} t, e^{-t / T_{2}}\right.
$$

$M_{y}(t)=M_{o} \sin \left(\omega_{o} t\right) e^{-t / T_{2}}$

Free Induction Decay

Transverse Relaxation (T_{2})

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

The Biomolecular NMR Experiment

Hardware

magnet $\left(B_{0}\right)$

Figure 3.2 Cutaway diagram of a superconducting magnet. The probe, sample spinner, and room-temperature shim coils are positioned coaxially in the foomspinner, and room-temperature shim colls are positioncd coaxially in the foom-
temperature bore of the magnet. The solenoid and cryoshim coils are immersed in liquid helium. The helium dewar is surrounded by a radiation shield and a liquid nitrogen dewar. Diagram courtesy of Bruker Instruments, Inc.

Figure 3.3 Probe assembly. Major components of a high-resolution NMR spec. troscopy ff probe are illustrated. Diagram courtesy of Bruker Instruments, Inc.
(Cavanagh, et al. "Protein NMR spectroscopy")

$$
\begin{gathered}
\text { probe } \\
\text { (rf + receiver coil) }
\end{gathered}
$$

Experimental Sensitivity

$$
\mathbf{S} / \mathbf{N} \sim \mathbf{N} \gamma_{\mathrm{exc}} \gamma_{\mathrm{det}}{ }^{3 / 2} \mathbf{B}_{0}^{3 / 2} \mathbf{N S} \mathbf{T}_{2}^{1 / 2}
$$

\mathbf{S} / \mathbf{N}	signal-to-noise	
\mathbf{N}	number of spins	\rightarrow sample concentration
$\gamma_{\text {exc }}$	gyromagnetic ratio of excited spins	
$\gamma_{\text {det }}$	gyromagnetic ratio of detected spins	
\mathbf{B}_{0}	static magnetic field	
	(e.g. 14.1 Tesla or 600 MHz for $\left.{ }^{1} \mathrm{H}\right)$	\rightarrow experimental time
NS	number of scans	transverse relaxation time

linewidth relaxation (decay of NMR signal)	Fast relaxation Broad linewidth Large molecule	Slow relaxation

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

CW vs. FT NMR

1D NMR

A radio frequency (rf) pulse along x causes the z magnetization (M) to precess around the x-axis. The pulse is switched off after a 90° rotation leaving the magnetization along the y-axis.

(b)

\rightarrow In this state, the spin vectors whose population difference gave rise to the z-magnetization before the rf pulse have become phase coherent, e.g. are oriented towards the y -axis.
\rightarrow The α - and β-states are equally populated, thus no z -
magnetization is left.
M_{y} :
y-magnetization

Frequency components along x and y are detected to define

the sign of ω.

FID
$90^{\circ}(x)=90^{\circ}$ rf pulse along x-axis
$F T=$ Fourier transformation $F(t) \rightarrow F(\omega)$
FID = free induction decay
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

1D Spectrum of a Protein

$$
\delta(\mathrm{ppm})=\left(\Omega-\Omega_{\mathrm{ref}}\right) / \omega_{0} * 10^{6}
$$

chemical shifts in parts per million [ppm] are independent of the field strenght of the static magnetic $\mathbf{B}_{\mathbf{0}}$ field

Chemical Shift

Origin: Nuclear Shielding

- Nuclei are shielded by electrons.
- Induced field associated with orbiting electrons.
- Require stronger magnetic field than H_{0}.
- Increased shielding requires greater applied field strength to achieve resonance.
- A molecule may contain multiple protons that exist in unique electronic environments.
- Therefore not all protons are shielded to the same extent.
- Resonance differences in protons are very small (ppm).
- Measure differences in resonance energy relative to a reference.
- Tetramethylsilane $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ (TMS) provides highly shielded reference (set to 0ppm).

Chemical Shift $(\delta, \mathrm{ppm})=\frac{\text { Observed chemical shift from TMS (Hz) }}{\text { Spectrometer frequency }(\mathrm{MHz})}=\mathrm{ppm}$

Chemical Shift

- Hypothetical NMR spectra.
- Shows TMS reference.
- Chemical shifts (δ, ppm) given relative to TMS
http://mason.gmu.edu/~bbishop1/chem318.1stlecture.ppt

Chemical Shift: Equivalency

- Protons in the same environment will have the same chemical shift.
- Protons in different environments have different chemical shifts.
- Protons with the same chemical shift are referred to as chemically equivalent.
- Integrated area of peak is proportional to the number of protons.

Chemical Shift

Chemical shifts are influenced by the electronic environment. Therefore, they are diagnostic for particular types of molecular structures. The following figure indicates average ranges of chemical shifts for protons in different types of molecules.

(c) http://www.cem.msu.edu/~reusch/OrgPage/nmr.htm

Chemical Shift: Summary

- intrinsic chemical shifts (depending on amino acid or nucleotide type) random coil chemical shifts in proteins (G-G-X-G-G)
- conformational chemical shifts, i.e. secondary chemical shift $\Delta \delta$:
secondary structure: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ shifts in proteins \rightarrow backbone conformation tertiary structure: \rightarrow ring-current shifts
- applications (proteins):
\rightarrow secondary structure identification: chemical shifts index, $\Delta \delta$
\rightarrow secondary structure prediction combined with database search: TALOS
\rightarrow tertiary structure validation and refinement
\rightarrow with RDCs: molecular fragment replacement, homology model refinement

secondary chemical shift $\Delta \delta$
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Scalar / J-Coupling

spectrum with coupling $\mathbf{J}_{\mathbf{I S}}>0$

Scalar / J-Coupling

 $\mathrm{J}_{\mathrm{jk}}<0$

Spins parallel:
Energy increased by J -coupling

Energy decreased by J -coupling

Spins parallel:
Energy decreased by
J-coupling

J-Coupling and Chemical Shift: Example

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

3-Bond J-Couplings

Martin Karplus showed that J from vicinal coupled ${ }^{1} \mathrm{H}$ atoms depends on the dihedral angle between the protons. This relationship can be approximated by the famous Karplus equation:
$J(\theta)=A \cos ^{2}(\theta)+B \cos (\theta)+C$
A, B, and C are empirically derived parameters.

J-couplings provide an estimation of molecular conformation!

Karplus Relation and Peptide Torsion Angle Φ

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

2D NMR: COSY

c) 2 D FT

Cross peaks contain new information as a result of magnetization transfer during the 2D experiment.

In a COSY spectrum the scalar J-coupling yields transfer of magnetization from the H^{N} to the Ha and vice versa which belong to the same scalar coupled spin system. The cross peak therefore provides information about intraresidue ${ }^{1} \mathrm{H},{ }_{1}^{1} \mathrm{H}$ connectivities.

Nuclear Overhauser Effect (NOE)

-The nuclear Overhauser effect (NOE) is in incoherent process in which two nuclear spins "cross-relax". Recall that a single spin can relax by T_{1} (longitudinal or spin-latice) or T_{2} (transverse or spin-spin) mechanisms. Nuclear spins can also cross-relax through dipole-dipole interactions and other mechanisms. This cross relaxation causes changes in one spin through perturbations of the other spin.
-The NOE is dependent on many factors. The major factors are molecular tumbling frequency and internuclear distance. The intensity of the NOE is proportional to r^{-6} where r is the distance between the 2 spins.

- Since protons have a higher polarization than carbons and the same sign of gamma they increase the observed carbon intensities.

Nuclear Overhauser Effect (NOE)

Two nuclear spins within about $5 \AA$ will interact with each other through space. This interaction is called cross-relaxation, and it gives rise to the nuclear Overhauser effect (NOE).

Two spins have 4 energy levels, and the transitions along the edges correspond to transitions of one or the other spin alone. W_{2} and W_{0} are the cross-relaxation pathways, which depend on the tumbling of the molecule.

Nuclear Overhauser Effect (NOE)

(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Nuclear Overhauser Effect (NOE)

When two nuclear spins are within $5 \AA$, they will cross-relax. If one spin (S) is saturated (red lines along the edge), the system is not in equilibrium anymore. Magnetization will either flow from the top to the bottom (W_{2} active) or from the right to left (W_{0} active). The difference in energy between $\beta \beta$ and $\alpha \alpha$ is twice the spectrometer frequency, and molecular motions about that frequency are required for the transition. The difference between $\alpha \beta$ and $\beta \alpha$ is very small, and very slow molecular motions (e.g. proteins) will excite that transition.

W2 cross-relaxation active
W0 cross-relaxation active
(c) Arthur S. Edison http://ascaris.health.ufl.edu/classes/bch6746

Residual Dipolar Couplings

Dipolar couplings are the physical basis for spinspin cross-talk which causes relaxation and the NOE. The dipolar coupling between two spins depends on the internuclear distance r and its orientation with respect to the static magnetic field B_{0}.

$$
\left.D \sim 1 / r^{3}\left\langle 3 \cos ^{2} \theta-1\right)\right\rangle
$$

In the solid state, this leads to large dipolar splittings and huge linewidths since dipolar couplings, e.g. $\mathrm{H}-\mathrm{N}$ are in the kHz range. In the liquid state, the orientation dependence and therefore D is averaged to zero.

If a molecule in solution is weakly aligned $\left(10^{-3}\right)$ residual dipolar couplings (RDCs) can be reintroduced with a size of a few Hz . Thus, highresolution spectra are obtained, but the distance and orientation dependence of D is reintroduced and provides valueable structural information.

For example, from the $\mathrm{H}-\mathrm{N}$ dipolar couplings the projection angles θ and ϕ can be obtained.
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

$$
R D C=D_{a}\left\{\left(3 \cos ^{2} \theta-1\right)+3 / 2 R \sin ^{2} \theta \cos 2 \phi\right\}
$$

D_{a} and R describe the alignment tensor. Biomolecules can be weakly aligned in dilute liquid crystalline media, e.g. bicelles (see figure).

Exchange

NMR time scale

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

NMR Time Scales

> chemical shifts
J-coupl.
relaxation: $\tau_{\mathbf{c}}$, internal motions
$\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{NOE}$

NMR Observables

Observable

- chemical shifts
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{31 \mathrm{p}}$
- J-couplings (through bond)
${ }^{3} J\left(H^{N}, H \alpha\right),{ }^{3} J(H \alpha, H \beta), \ldots$
- NOE (through space)
- solvent exchange (HN)
- relaxation / linewidths ${ }^{1} \mathrm{H},{ }_{1}^{13} \mathrm{C},{ }_{1}^{15} \mathrm{~N}$
- residual dipolar couplings ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C},{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}, \ldots$

Information
assignments, secondary structure
dihedral angles: ϕ, χ, Karplus curves
interatomic distances ($<5 \AA$) hydrogen bonds mobility, dynamics conform./chem.exchange projection angles (ψ, \ldots) bond projection angles

Structure Determination

NMR Structure Determination

NMR Structure Determination

- The NOE intensities measured in a NOESY spectrum are calibrated and used to derive proton/proton distance restraints (NOE $\sim 1 / \mathrm{r}^{6}$)
- These are applied in a restrained molecular dynamics / simulated annealing (MD/SA) calculation.
- Different and/or randomized starting structures are used. The result is an ensemble of structures that is consistent with the experimentally derived distance restraints.

Figure 10.2. Schematic presentation of the amino acid sequence of lac headpiece, with three boxes identifying α-helical regions. The curved lines connect residues between which one or several long-range NOE's were observed (from Zuiderweg et al., 1984b).
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

An ensemble of NMR structures obtained from a restrained MD/SA calculation

Distance Restraints

Proton "density" in a 15 kDa protein

protein/protein NOEs
intermolecular NOEs protein/RNA

18 kDa protein/RNA complex

Accuracy and Precision

Precision: coordinate rmsd of structure ensemble vs. average structure Accuracy: coordinate rmsd of structures ensemble vs. "true" structure

Problems with Higher Molecular Weights

- slower tumbling in solution \rightarrow fast decay of NMR signal \rightarrow poor signal-to-noise
- larger number of signals \rightarrow signal overlap in NMR spectra

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Solutions for Higher Molecular Weights

- improvements in hardware:
\rightarrow higher magnetic fields, cryoprobes
- improved NMR methods: relaxation optimized pulse sequences
\rightarrow TROSY (transverse relaxation optimized spectroscopy), multiple quantum line-narrowing
- novel restraints:
\rightarrow residual dipolar couplings
\rightarrow cross-correlated relaxation
\rightarrow chemical shifts
- isotope labeling, especially deuteration:
\rightarrow residue-specific labeling (amino acid or nucleotide)
$\rightarrow{ }^{2} \mathrm{H}$-labeling - random fractional (e.g. 50-75\%)
- specific, e.g. with ${ }^{1} \mathrm{H}^{-}$- or methyl-selective ${ }^{1} \mathrm{H}$-labeling
\rightarrow segmental labeling (chemical ligation, intein method, ligases)
\rightarrow subunit specific labeling in molecular complexes
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

TROSY and ${ }^{2} \mathrm{H}$-Labeling

Transverse relaxation optimized spectroscopy

${ }^{2} \mathrm{H}$-labeling

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Increase in Molecular Weight

NMR Tools for Protein-Ligand and Protein-Protein Interactions

Two-Site Exchange

Fig. 4.7 Calculated NMR spectra for a pair of nuclei exchanging between two sites A and B with populations in the ratio $p_{B} / p_{A}=2$ (unsymmetrical two-site exchange). Spectra are shown for a range of values of the average exchange rate $\frac{1}{2}\left(k_{\mathrm{A}}+k_{\mathrm{B}}\right)$, where $k_{\mathrm{A}} / k_{\mathrm{B}}=2$. The difference in resonance
frequencies of the two sites, δv, is 50 Hz . The linewidths in the absence of exchange are 1 Hz .

$$
\mathrm{K}_{\mathrm{diss}}=[\mathrm{P}][\mathrm{L}] /[\mathrm{PL}]=\mathrm{K}_{\mathrm{B}} / \mathrm{K}_{\mathrm{A}}
$$

$$
\mathrm{k}_{\mathrm{A}}=\mathrm{k}_{\text {on }}[\mathrm{L}] \quad \mathrm{k}_{\mathrm{B}}=\mathrm{k}_{\text {off }}
$$

$$
\mathrm{B}=\text { protein-ligand complex } \mathrm{PL}
$$

$$
A=\text { free protein } P
$$

This can be extended directly to study protein-ligand interactions.

Limit	Rates	Populations	Line broadening
Slow	$\mathrm{k}_{\mathrm{A}, \mathrm{B}} \ll\left(v_{\mathrm{A}}-v_{\mathrm{B}}\right)$	$\mathrm{p}_{\mathrm{A}} / \mathrm{p}_{\mathrm{B}}=\operatorname{area}_{\mathrm{A}} / \operatorname{area}_{\mathrm{B}}$	$\Delta v_{\mathrm{A}}=\mathrm{k}_{\mathrm{A}} / \pi=1 /\left(\pi \tau_{\mathrm{A}}\right)$
Fast	$\mathrm{k}_{\mathrm{A}, \mathrm{B}} \gg\left(v_{\mathrm{A}}-v_{\mathrm{B}}\right)$	$\mathrm{p}_{\mathrm{A}}=\left(v-v_{\mathrm{B}}\right) /\left(v_{\mathrm{A}}-v_{\mathrm{B}}\right)$	$\Delta v=4 \pi \mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{B}}\left(v_{\mathrm{A}}-v_{\mathrm{B}}\right)^{2} /\left(\mathrm{k}_{\mathrm{A}}+\mathrm{k}_{\mathrm{B}}\right)$

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

NMR Titrations

Equilibrium Binding Constants from the Langmuir Isotherm

$$
\mathbf{f}_{\mathrm{b}}=\frac{[\mathbf{L}]_{\mathrm{trex}}}{\mathbf{K}_{\mathrm{d}}+[\mathbf{L}]_{\text {free }}}
$$

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

- In the fast exchange regime, chemical shift changes $\Delta \delta$ which induced upon adding the ligand are proportional to the mole fraction c of ligand-bound protein.
- Dissociation constants are obtained by least-square fitting of $\Delta \delta$ as a function of ligand concentration $L_{\text {total }}$.

NMR in Drug Research

> Structure-Activity Relationships (SAR) by NMR

Science (1996) 274, 1531

Fig. 2. A superposition of ${ }^{15} \mathrm{~N}-\mathrm{HSQC}$ spectra for FKBP in the absence (magenta contours) and presence (black contours) of compound 3. Both spectra were acquired in the presence of saturating amounts of $2(2.0 \mathrm{mM})$. Significant chernical shifts changes are observed for labeled residues.

SAR by NMR ...

... is a nuclear magnetic resonance (NMR)-based method in which small organic molecules that bind to proximal subsites of a protein are identified, optimized, and linked together to produce high-affinity ligands. The approach is called "SAR by NMR" because structure-activity relationships (SAR) are obtained from NMR. With this technique, compounds with nanomolar affinities for a target protein can be rapidly discovered by tethering two ligands with micromolar affinities. The method reduces the amount of chemical synthesis and time required for the discovery of high-affinity ligands and is particularly useful in target-directed drug research.

GroEL/ES Subunit Labeling

GroES
72 kDa

GroES/SR1
472 kDa
GroES/GroEL 872 kDa

Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) Nature 418, 207-211.

Molecular Interface Mapping

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Molecular Interface Mapping

© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Characterizing Protein Dynamics

Backbone Dynamics - Multidomain Proteins

Interdomain motion in the FBP3/4M29 ssDNA complex

Even when the ssDNA is bound the linker connecting the two KH domains remains flexible as determined by NMR relaxation measurements.
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Enzyme Dynamics During Catalysis

- Cyclophilin A catalyses cis/trans isomerization of Xxx-Pro peptide bonds.
- Conformational fluctuations of the active site are found that occur on a time scale of hundreds of μs.
- The rates of conformational dynamics of the enzyme strongly correlate with the microscopic rates of substrate turnover.

Three-state model of CypA catalysis

Chemical shift changes of the N-H signals in CypA upon titration with substrate map to the active site

R_{2} relaxation rate constants of CypA at different substrate substrate concentrations
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Enzyme Dynamics During Catalysis
 R2 contributions
 R2 contributions from

only from binding
binding and isomerization

Quantification of exchange dynamics in CypA during catalysis. R_{2} rate constants are plotted as a function of total substrate concentration.
(A) R_{2} data for $K 82$. The continuous line indicates the fitted

Eq. 2, including contributions only from binding. $\mathrm{K}_{\mathrm{D}}{ }^{\text {obs }}=1.18$ $\mathrm{mM} ; \mathrm{k}_{\text {off }}=11,100 \mathrm{~s}^{-1} ; \delta \omega=1450 \mathrm{~s}^{-1}(3.8 \mathrm{ppm})$.
(B) R_{2} data for $R 55$. The continuous line indicates a fit according to the full three-state model, including contributions from both binding and isomerization; using K_{D} obs $=1.19 \mathrm{mM}$, then $\mathrm{k}_{\text {off }}^{\text {trans }}=13,000 \mathrm{~s}^{-1} ; \mathrm{K}_{\text {off }}^{\text {cis }}=10,000 \mathrm{~s}$
${ }^{1} ; \mathrm{k}_{\mathrm{cat}}{ }^{\mathrm{ct}}=9000 \mathrm{~s}^{-1} ; \mathrm{k}_{\mathrm{cat}}{ }^{\mathrm{tc}}=5100 \mathrm{~s}^{-1} ; \delta \omega=440 \mathrm{~s}^{-1}(1.2 \mathrm{ppm})$;
$\delta \omega_{\mathrm{ct}}=640 \mathrm{~s}^{-1}(1.7 \mathrm{ppm})$.

Residues in CypA exhibiting microsecond time scale dynamics during catalysis.
(A) Structure of the cis conformation of the substrate Suc-Ala-Phe-Pro-Phe-4NA (green) bound to CypA, based on the x-ray structure of CypA complexed with the cis form of Suc-Ala-Ala-Pro-Phe-4-NA (1RMH) (21). CypA residues with chemical exchange in both the presence and absence of substrate are color coded in blue (F67, N71, G74, S77, and S110). Residues in red exhibit chemical exchange only during turnover (R55, K82, L98, S99, A101, N102, A103, and G109). Residues shown in magenta exhibit chemical exchange in the absence of substrate, but increase in its presence (T68 and G72).
(B) Suggested trajectory of the enzymatic pathway based on the dynamics results. CypA catalyzes prolyl isomerization by rotating the part COOH terminal to the prolyl peptide bond by 180° to produce the trans conformation of the substrate. In this model, the observed exchange dynamics for residues in strand 5 can be explained.
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching
Science (2002) 295, 1520-1523.

Protein Folding

Abstract

Stopped-flow ${ }^{19} \mathrm{~F}$ NMR spectra of the refolding of $6-{ }^{19} \mathrm{~F}$ tryptophan labeled Escherichia coli dihydrofolate reductase following dilution from 5.5 to 2.75 M urea at $5^{\circ} \mathrm{C}$ in the presence of 3.8 mM NADP+.

The disappearance of the five resonances of the unfolded state, clustered between -46.0 and -46.6 p.p.m., and the growth of the more widely dispersed native peaks are clearly seen in this wellresolved set of spectra. Each spectrum represents the sum of 41 separate rapid dilution experiments. The kinetics and chemical shifts suggest the formation of an intermediate that is unable to bind NADP+ strongly, having a native-like side chain environment in the regions around tryptophans 30,47 and 133, and little if any native side chain environment around tryptophans 22 and 74 . The resonance labeled 47i is that of Trp 47 in the intermediate.

NMR Supplement II, Nature Struct. Biol. (1998) 5, 504-50
© 2002, Michael Sattler http://www.embl.de/nmr/sattler/teaching

Protein Folding

${ }^{1} \mathrm{H}-15 \mathrm{~N}$ HSQC spectra of bovine lactalbumin at $3^{\circ} \mathrm{C}$ during different stages of the folding process.
a, Poorly resolved spectrum of the denatured state (A-state) at pH 2.0 recorded before the initiation of refolding.
b, Kinetic spectrum accumulated during folding (30 min).
c, Well resolved spectrum of the native (N) state at pH 7.0 recorded after the refolding reaction.
The insets show enlargements of the region containing the Val 92 resonance of the N -state. The lower intensity of this resonance in spectrum (b) compared to (c), and the negative features above and below the central peak contain information on the local rate of formation of native structure.

NMR Supplement II, Nature Struct. Biol. (1998) 5, 504-50

Resources and Further Reading

WWW:
http://www.embl.de/nmr/sattler/teaching
NMR theory:

- Spin dynamics - basics of nuclear magnetic resonance

Malcolm H. Levitt, Wiley 2001

- Protein NMR spectroscopy - Principles and Practice. Cavanagh, Fairbrother, PalmerIII, Skelton. Academic Press (1996)
- Multidimensional NMR in liquids - Basic principles and experimental methods. van de Ven, VCH (1995)
- Nuclear Magnetic Resonance Spectroscopy. Harris. Longman (1983)
- Principles of NMR in one and two dimensions. Ernst, Bodenhausen, Wokaun. Oxford (1989)

Biomolecular NMR:

- NMR of Proteins and Nucleic Acids. Wüthrich. Wiley (1986)
- Nature Struct. Biol. (1997) 4, 841-865 \& 5, 492-522 (NMR supplement I \& II)
- NMR spectroscopy of large molecules and multimolecular assemblies in solution. Wider, Wüthrich Curr. Op. Struct. Biol. (1999) 9, 594-601

