

THE UNIVERSITY of TEXAS

SCHOOL OF HEALTH INFORMATION SCIENCES AT HOUSTON

Small-Angle Scattering from Biomolecular Solutions

For students of HI 6001-125

"Computational Structural Biology"

Dimitri I. Svergun, Ph.D. EMBL, Hamburg Outstation

http://biomachina.org/courses/structures/05.html

Small-angle scattering experiment

Scattering from dilute macromolecular solutions (monodisperse systems)

$$I(s) = 4\pi \int_{0}^{D} p(r) \frac{\sin sr}{sr} dr$$

The scattering is proportional to that of a single particle averaged over all orientations, which allows one to determine size, shape and internal structure of the particle at low (1-10 *nm*) resolution.

X-rays

Neutrons

- X-rays: scattering factor increases with atomic number, no difference between H and D
- Neutrons: scattering factor is irregular, may be negative, huge difference between H and D

Element	Н	D	С	N	0	Р	S	Au
At. Weight	1	2	12	14	16	30	32	197
N electrons	1	1	6	7	8	15	16	79
b _X ,10 ⁻¹² cm			1.69	1.97	2.16	3.23	4.51	22.3
b _N ,10 ⁻¹² cm	-0.374	0.667	0.665	0.940	0.580	0.510	0.280	0.760

Solvent scattering and contrast

l_{solution}(s)

l_{solvent} (s)

l_{particle}(s)

- To obtain scattering from the particles, solvent scattering must be subtracted
- Contrast Δρ = <ρ(r) ρ_s>, where ρ_s is the scattering density of the solvent (is usually very small for biological samples)

Contrast variation

Changing solvent density separates information about shape and internal structure

Selective labelling permits to visualize specific structural fragments

Stuhrmann, H.B. & Kirste, R.G. (1965) Z. Phys. Chem. 46, 247

Addition of sucrose or salts

RNA, 550 e/nm³

60% sucrose, 430 e/nm³

Protein, 410 e/nm³

H₂O, 344 e/nm³

Neutrons

Isotopic H/D substitution

D-Protein, 130% D₂O

D-RNA, 120% D₂O

 D_2O , 6.38×10¹⁰ cm⁻²

H-RNA, 70% D₂O

H-Protein, $40\% D_2O$

 H_2O , -0.59×10¹⁰ cm⁻²

Major applications of solution scattering

Ab initio low resolution structure analysis

Addition of missing fragments to high resolution models

Rigid body refinement of complexes

Quantitative characterization of mixtures

Contrast variation on multicomponent particles

Major problem of scattering data analysis

Ab initio methods

Envelope function

Stuhrmann, H. B. (1970) *Z. Physik. Chem. N.F.* **72**, 177 Svergun, D.I. *et al.* (1996) *Acta Crystallogr.* **A52**, 419 **Bead models**

Chacón, P. *et al.* (1998) *Biophys. J.* **74,** 2760

Svergun, D.I. (1999) *Biophys. J.* **76**, 2879 **Dummy residues model**

Svergun, D.I., Petoukhov, M.V. & Koch, M.H.J. (2001) *Biophys. J.* **80**, 2946-2953.

All the methods minimize Discrepancy[Data] + Penalty[Additional info]

Bead (dummy atoms) models

- The particle is represented as an ensemble of $\approx 10^3 10^4$ small densely packed volume elements (beads) in the search volume (e.g. a sphere with diameter D_{max})
- The structure is described by phase assignments of each of these positions (e.g. for shape determination 1 = particle, 0 = solvent)
- A Monte-Carlo type search is employed to build a model fitting the scattering data

Chacón, P. *et al.* (1998) *Biophys. J.* **74**, 2760-2775.

Svergun, D.I. (1999) *Biophys. J.* **76**, 2879-2886

Ab initio program DAMMIN

Using simulated annealing, finds a compact dummy atoms configuration X that fits the scattering data by minimizing

 $f(X) = \chi^2[I_{exp}(s), I(s, X)] + \alpha P(X)$

where χ is the discrepancy between the experimental and calculated curves, P(X) is the penalty to ensure compactness and connectivity, $\alpha > 0$ its weight.

Benchmarking ab initio methods

Envelope Bead model Dummy residues

Study of nuclear exportins and importins

Importin/exportin-mediated nuclear transport

Targets for small-angle scattering study

Two overleble enveted etwortures of bound

Two available crystal structures of bound importins built by stacks of HEAT repeats

Examples of cargo recognition

importins

Snail-like importin β Z-like transportin

Transportin-RanGTP: Z-like

Free transportin: Z-like

Importins ab initio

Free importin β: Z-like

Bound importin β: snail-like

Fukuhara, N., Fernandez, E., Ebert, J., Conti, E. & Svergun, D. I. (2004) J. Biol. Chem. 279, 2176

Exportins ab initio

Ig I, relative

Fukuhara, N., Fernandez, E., Ebert, J., Conti, E. & Svergun, D. I. (2004) J. Biol. Chem. 279, 2176

Rigid body modelling

Scattering amplitudes of the subunits are pre-computed and positional parameters are refined to fit the scattering from the complex

Quaternary structure of glutamate synthase

M.V. Petoukhov, D.I. Svergun, P.V. Konarev, S. Ravasio, R.H.H. van den Heuvel, B. Curti & M.A. Vanoni (2003). *J. Biol. Chem.*, **278**, 29933

Scattering from a multiphase particle

Ab initio multiphase modelling

Start: random phase assignments within the search volume, no fit to the experimental data Finish: condensed multiphase model with minimum interfacial area fitting multiple data sets

Program MONSA, Svergun, D.I. (1999) Biophys. J. 76, 2879

Contrast variation on hybrid ribosomes

0% D₂O

 $40\% D_2O$

70% D₂O

Protonated 70S ribosome, HH30+HH50

Hybrid 70S with 23S RNA deuterated, HH30+HD50

Scattering data from hybrid ribosomes

Contrast variation by solvent exchange

HH30+HH50 DD30+HH50 DH30+HH50						
in 0, 35, 50, 75, 100% D ₂ O	15 curves					
HH30+DD50 in 0, 35, 50, 75% D ₂ O	4 curves					
DH30+DD50 and HH30+DH50						
in 0, 40, 60, 100% D ₂ O	8 curves					
HH30 and HH50 in 0, 100% D_2O	4 curves					
DD30 and DD50 in 0% D ₂ O	2 curves					

Spin-dependent contrast variation data

HH30+DD50, DD30+HH50, DH30+DH50
 Polarization = 0 and 1
 X-ray scattering curves from 70S, 30S and 50S
 TOTAL 42 curves

Search volume for the 70S ribosome

Yellow pixels: cryo-EM model of Frank *et al.* (1995)

Red and blue circles: dummy atoms belonging to the 30S and 50S subunits, respectively

Number of atoms M=7860 Packing radius r_0 =0.5 nm

A protein-RNA map in the 70S ribosome E.coli

X-ray and neutron scattering map of protein-RNA distribution in the 70S ribosome *E. coli* (left, resolution 3 nm) compared with later crystallographic models (right).

Top, 30S subunit from *Th. thermophilus*, resolution 0.33 nm
(Schluenzen, F, et al, & Yonath, A.
(2000) *Cell*, **10**, 615).

Bottom, 50S subunit from *H. marismortui*, resolution 0.24 nm (Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. (2000) *Science*, **289**, 905).

Acknowledgments

M.H.J. Koch, M.Malfois (EMBL, Hamburg Outstation), V.V. Volkov, M.B. Kozin, M.V.Petoukhov, P.V.Konarev, A.V.Sokolova (Institute of Crystallography, Moscow)

GItS: M.A.Vanoni (Milan University)

 Ribosome: K.H.Nierhaus (MPIMG, Berlin), H.B.Stuhrmann (GKSS, Geesthacht), J.Frank (Wadsworth Center, Albany), J. Skov Pedersen (Aarhus University)

 Importins/Exportins: N.Fukuhara (IBS, Grenoble), E.Conti (EMBL, Heidelberg), P.Timmins (ILL, Grenoble)

Animation: <u>http://www.animfactory.net/</u>