

THE UNIVERSITY of TEXAS

SCHOOL OF HEALTH INFORMATION SCIENCES AT HOUSTON

X-Ray Crystallography Pt. II

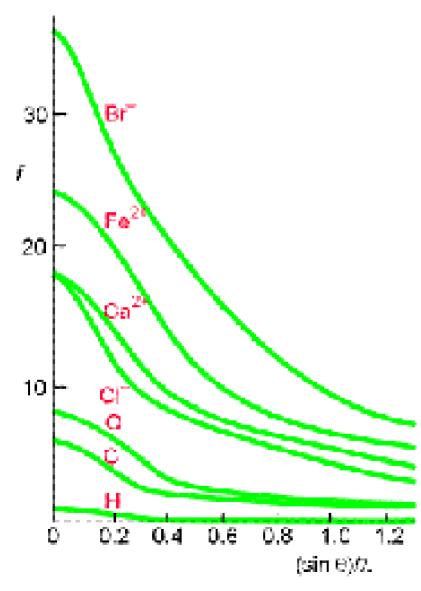
For students of HI 6001-125 "Computational Structural Biology"

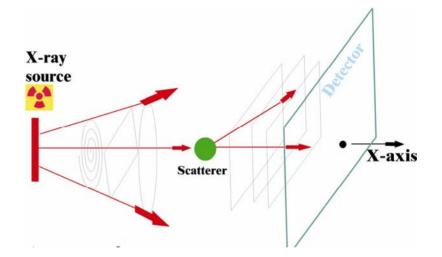
Sugoto Chakravarty, Ph.D. Baylor College of Medicine

http://biomachina.org/courses/structures/03.html

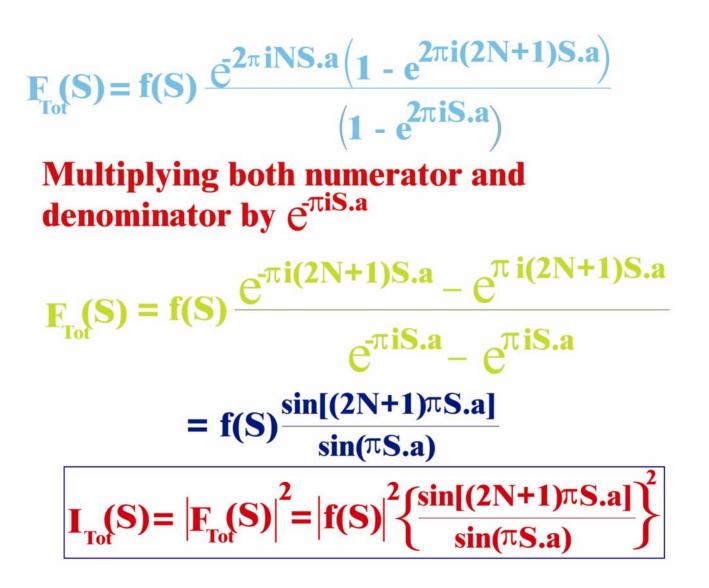
Periodic Array of 2N+1 Identical Atoms **Periodicity** a -5 -4 -3 -2 -1 0 1 2 3 4 5 6 $F_n(S) = e^{2inS.a} F(S)$ $\mathbf{F}_{\mathbf{Tot}}(\mathbf{S}) = \sum_{n=-N}^{N} \mathbf{F}_{n}(\mathbf{S}) = \mathbf{F}(\mathbf{S}) \sum_{n} e^{2\pi i n \mathbf{S}. \mathbf{a}}$ $\sum_{n=-N}^{N} e^{2\pi i n S.a} \longrightarrow \left[f(S) e^{\frac{2\pi i N S.a}{(1 - e^{2\pi i (2N+1)S.a})}} \right]$ **Fringe function** of the array

Atomic Form Factors

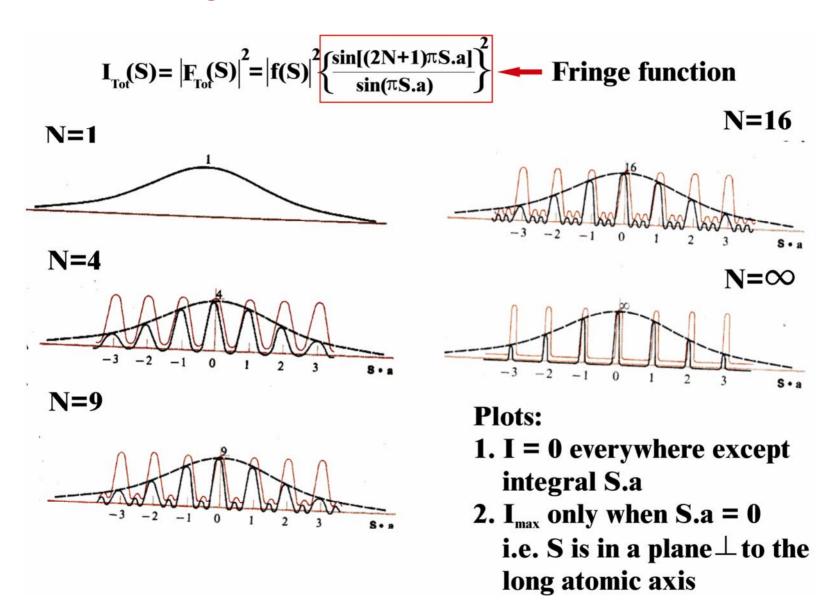




Periodic Array of 2N+1 Identical Atoms



Fringe Function and Diffraction



Condition for Diffraction Maximum

$$\mathbf{I}_{\mathrm{Tot}}(\mathbf{S}) = \left| \mathbf{F}_{\mathrm{Tot}}(\mathbf{S}) \right|^2 = \left| \mathbf{f}(\mathbf{S}) \right|^2 \left\{ \frac{\sin[(2N+1)\pi \mathbf{S}.\mathbf{a}]}{\sin(\pi \mathbf{S}.\mathbf{a})} \right\}^2$$

Usually, when $0.1 < |\sin(\pi S.a)| \le 1.0$

the value of sin[(2N+1)πS.a] oscillates between 0 and 1. Then

$$-10 \leq \frac{\sin[(2N+1)\pi S.a]}{\sin(\pi S.a)} \leq 10.$$

Condition for Diffraction Maximum

$$\mathbf{I}_{\mathrm{Tot}}(\mathbf{S}) = \left|\mathbf{F}_{\mathrm{Tot}}(\mathbf{S})\right|^{2} = \left|\mathbf{f}(\mathbf{S})\right|^{2} \left\{\frac{\sin[(2N+1)\pi \mathbf{S}.a]}{\sin(\pi \mathbf{S}.a)}\right\}^{2}$$

But when $sin(\pi S.a) \rightarrow 0$, using the expansion for sin(x), the ratio becomes (2N+1) which is very large for macromolecules. Thus, $I_{Tot}(S)$ is large only when

S.a = n where n is 0, 1, 2...

von Laue condition

Miller Indices in a Lattice

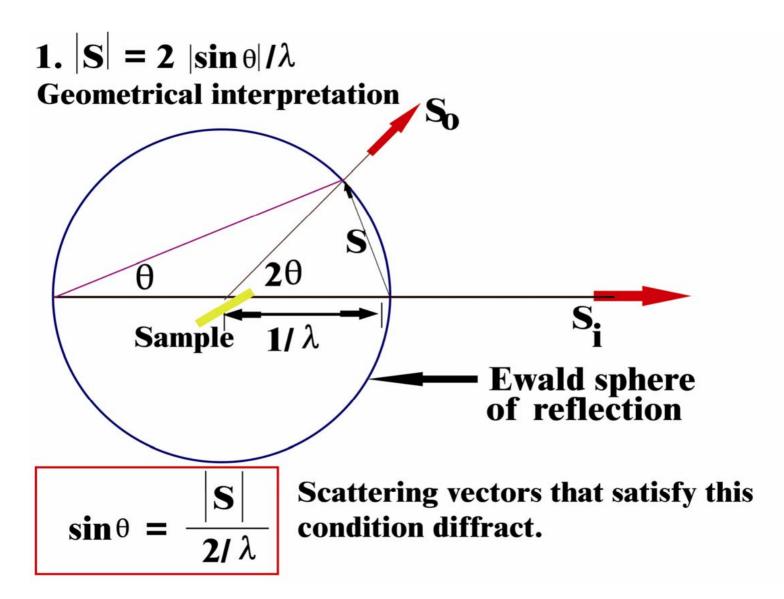
Miller indices (h,k,l)

Indices that characterize a set of parallel planes having intercepts a/h, b/k and c/l on the three axes.

(3,1)

(1,2)

Two Conditions for Diffraction



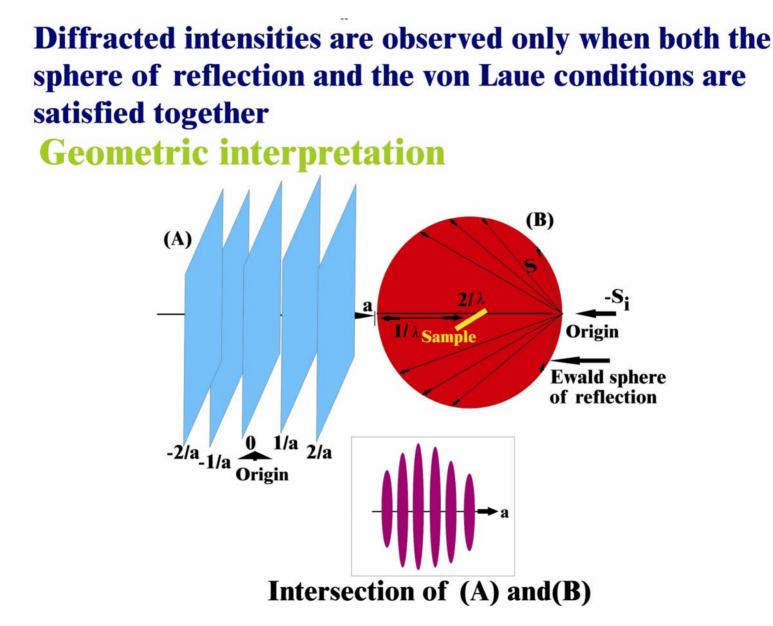
Two Conditions for Diffraction

2. Geometric interpretation of von Laue condition

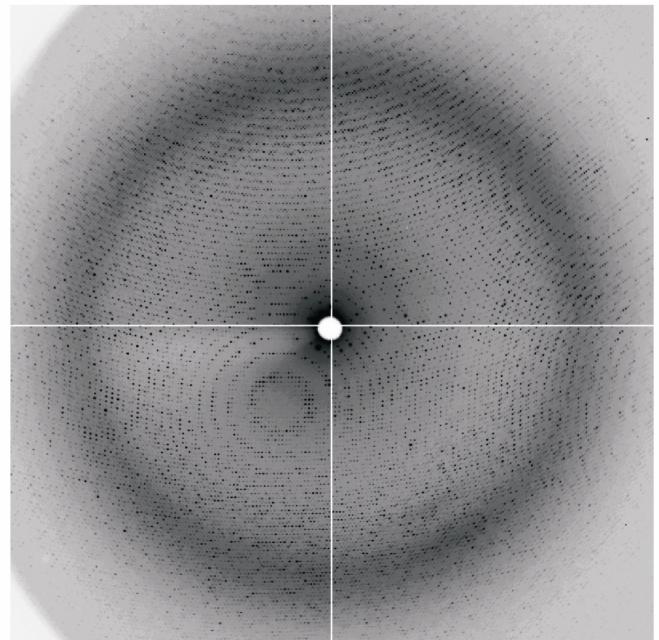
$$\mathbf{I}_{\mathrm{Tot}}(\mathbf{S}) = \left| \mathbf{F}_{\mathrm{Tot}}(\mathbf{S}) \right|^{2} = \left| \mathbf{f}(\mathbf{S}) \right|^{2} \left\{ \frac{\sin[(2N+1)\pi \mathbf{S}.\mathbf{a}]}{\sin(\pi \mathbf{S}.\mathbf{a})} \right\}^{2}$$

S.a = n where n is 0, 1, 2... von Laue condition

Visualizing the Two Conditions for Diffraction



Diffraction Pattern

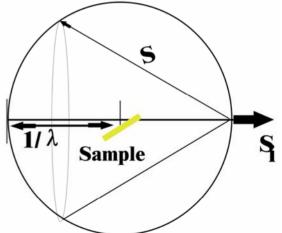


Observable Part of Ewald Sphere

Satisfy both sphere of reflection and von Laue conditions

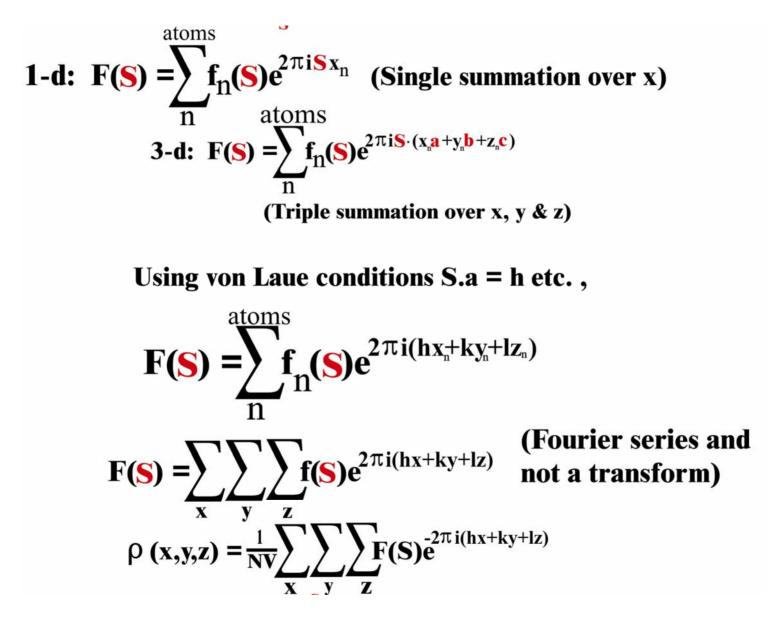
If the wavelength λ and the incident direction S₁ are fixed, only a limited portion of the Ewald sphere can diffract. Limiting sphere: $2/\lambda$

To increase the diffracting region, the incident direction and/or the wavelength needs to be changed.

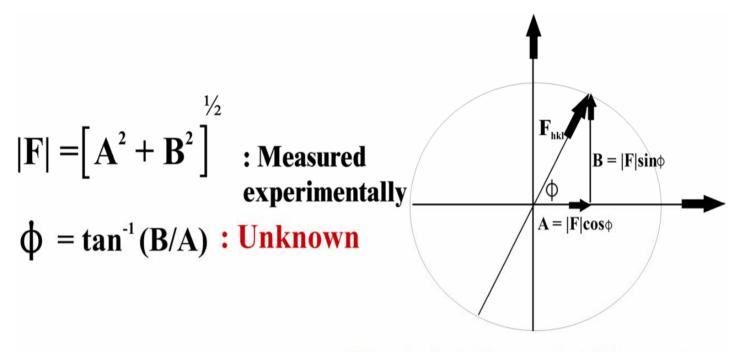


Leads to many experimental data collection strategies.

Scattering in 3 Dimensions



Argand Diagram of Structure Factors



The circle indicates that F is a vector quantity with an amplitude and a phase

Signs of both A and B important in determining the magnitude and quadrant of φ

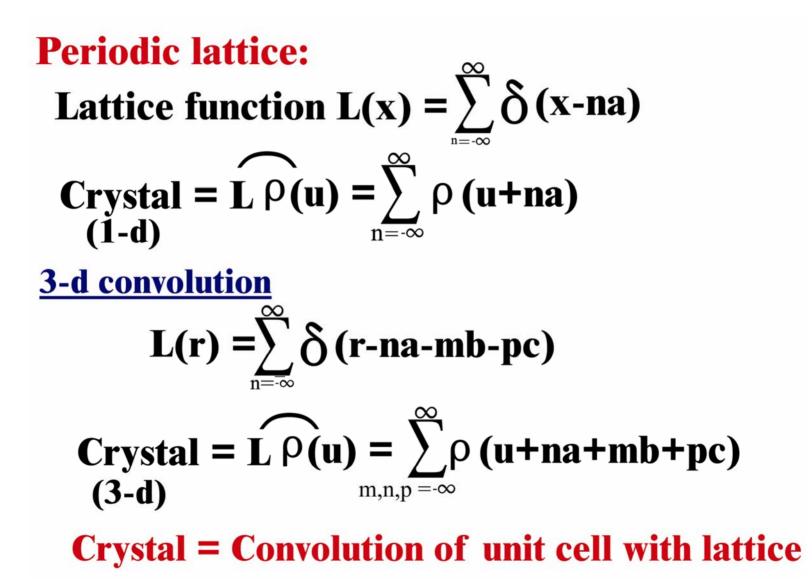
Crystal Lattice and Convolution

1-d convolution

 $\widehat{fg(u)} = \int_{-\infty}^{\infty} dx f(x)g(u-x) = \widehat{gf(u)}$ -\overline{1} If g(x) = \delta (x-a): $\widehat{f\delta(u)} = f(u+a)$

Thus the convolution of f(x) with $\delta(x-a)$ just shifts f(x) by a distance a.

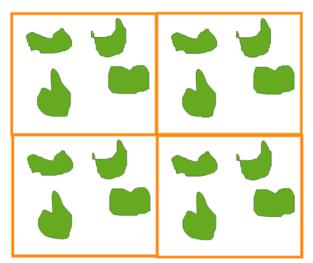
Crystal Lattice and Convolution



Unit Cell and Symmetry

Lattice: repetition of unit cells by pure translation

Contents of the unit cell: Contents cannot be arbitrarily arranged but there must be an asymmetric unit that is rotated (and possibly fractionally translated) to generate the complete unit cell contents



2-d lattice

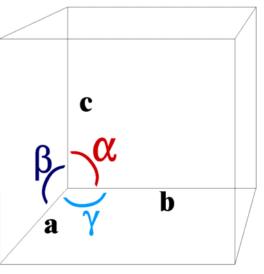
Possible rotational symmetry among the asymmetric units

1, 2, 3, 4, 6-fold: 5-fold not allowed by translational symmetry Mirror reflection not allowed in biological molecules Fractional translations: ½, 1/3, 2/3, 1/4, 3/4, 1/6,.... of the unit cell dimensions Unit Cell Types Determined by Symmetry

Point groups: All possible rotations and reflections among the asymmetric units 32 Point groups

Crystal systems: Point groups + translation symmetry restricts types of the unit cell possible (7 crystal systems)

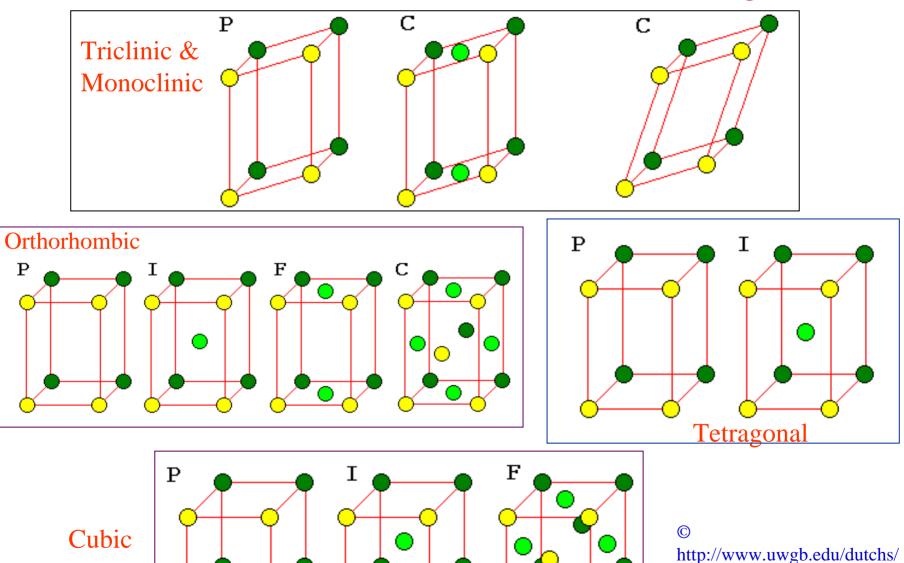
Restrictions on the unit cell lengths and angles



7 Crystal Systems and 14 Bravais Lattices

System	Lattice	Min symmetry	Unit cell
Triclinic	Р	None (1-fold)	a≠b≠c α≠β≠γ
Monoclinic	Р	2-fold along b	a ≠ b ≠ c α≠γ β≠90
Orthorhombic	P, C, I, F	2-folds along a,b,c	a≠b≠c
Tetragonal	P,I	4-fold along c	$\mathbf{a} = \mathbf{b} \neq \mathbf{c}$
Trigonal/ Rhombohedra	R,P al	3-fold along c	$\mathbf{a} = \mathbf{b} = \mathbf{c}$ $\boldsymbol{\alpha} = \boldsymbol{\beta} = \boldsymbol{\gamma} \neq 90$
Hexagonal	Р	6-fold along c	$\mathbf{a} = \mathbf{b} \neq \mathbf{c}$ $\boldsymbol{\alpha} = \boldsymbol{\beta} = 90 \boldsymbol{\gamma} = 120$
Cubic	P,I, F	3-fold along body diagonals	$\mathbf{a} = \mathbf{b} = \mathbf{c}$
$\beta - \frac{\alpha}{\gamma}$	b		Centering a b

Different Lattices and Centering



symmetry/bravais.htm

Applying a Screw Operation

```
2-fold through origin:

1 0 0

0 -1 0 X,y,Z X, -y, -Z

0 0 -1
```

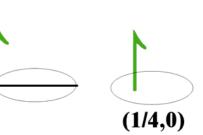
2-fold serew axis 21

symbol when axis is perpendicular to the page

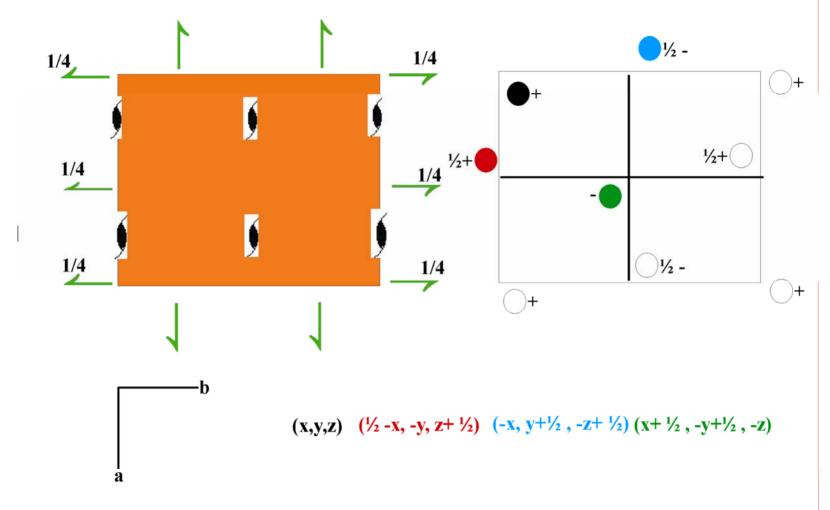
symbol when axis is parallel to the page

2₁along [001] and passing through origin: (x, y, z) (-x -y $\frac{1}{2}$ +z)

2, along [001] and passing through (1/4, 0, 0): (x, y, z) $(\frac{1}{2} - x - y - \frac{1}{2} + z)$ (0,0)



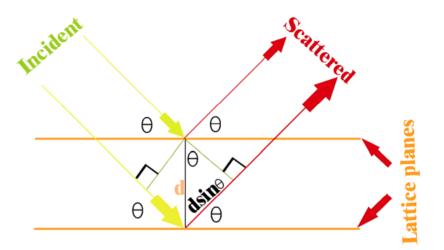
Example of a Space Group



P2₁2₁2₁ from International tables (#19)

Bragg's Law of Diffraction

The atoms in a crystal can be considered as a series of parallel planes.



To observe diffraction, path difference between reflected beams from adjacent planes must be an integral number of wavelengths

Phase Solution

Aim: Determine φ_p for each reflection

- Isomorphous replacement

- Anomalous scattering
- Molecular replacement

(Note: A.s. not explained here, similar to I.r., but using special wavelengths to break Friedel symmetry, see http://www.bmsc.washington.edu/scatter/AS_tutorial.html)

Isomorphous Replacement $|\mathbf{F}_{PH}|$ **F**_{PH} $\mathbf{F}_{\mathbf{P}}$ \mathbf{F}_{H} Φp $|\mathbf{F}_{\rm PH}| = |\mathbf{F}_{\rm P}| \pm |\mathbf{F}_{\rm H}|$ (Fig. b) $|\mathbf{F}_{\mathsf{PH}}| \neq |\mathbf{F}_{\mathsf{P}} \pm |\mathbf{F}_{\mathsf{H}}|$ (Fig. a)

Soak in heavy atoms into the crystal

If the derivatized structure remains similar, hope to get vector relationships between F_{P} , F_{H} and F_{PH}

Simple collinear relationship between the structure factors holds for only centro-symmetric reflections whose phases are 0 or π (Fig. a)

No simple relationship between the structure factors for the general non-centrosymmetric reflections (Fig. b)

Patterson Functions to Locate Heavy Atoms

$$\rho(\mathbf{r}) = \int \mathbf{F}(\mathbf{s}) e^{-2\pi \mathbf{i} \mathbf{s} \cdot \mathbf{r}} d\mathbf{r}$$

$$\mathbf{P} = \int \mathbf{I}(\mathbf{S}) e^{-2\pi \mathbf{i} \mathbf{S} \cdot \mathbf{I}} d\mathbf{r}$$
$$= \int \mathbf{F}^*(\mathbf{S}) \mathbf{F}(\mathbf{S}) e^{-2\pi \mathbf{i} \mathbf{S} \cdot \mathbf{I}} d\mathbf{r}$$
$$= \rho(\mathbf{r}) \rho(-\mathbf{r})$$

The Patterson is a convolution of the electron density with its image that is inverted through the origin Patterson are Inter-Atomic Distance Maps

$$\begin{split} \mathbf{I}_{h} \propto |\mathbf{F}_{h}|^{2} = & \sum_{j}^{N} \mathbf{f}_{j} e^{2\pi i \mathbf{h} \cdot \mathbf{r}_{j}} \sum_{k}^{N} \mathbf{f}_{k} e^{-2\pi i \mathbf{h} \cdot \mathbf{r}_{k}} \\ &= \sum_{j}^{N} \mathbf{f}_{j} \mathbf{f}_{k} e^{2\pi i \mathbf{h} \cdot (\mathbf{r}_{j} - \mathbf{r}_{k})} \end{split}$$

Thus, the Patterson functions, computed using the intensities as coefficients, map the inter-atomic vectors

In real space:
$$\mathbf{P} = \int \rho(\mathbf{r}) \rho(\mathbf{r}+\mathbf{u}) \mathbf{d}^{3}\mathbf{r}$$

Pattersons Determine Heavy Atom Vectors

For large N, Patterson maps become uninterpretable

Orthorhombic P2₁**2**₁**2**₁:

 $(x,y,z); (\frac{1}{2}-x,-y,\frac{1}{2}+z); (\frac{1}{2}+x,\frac{1}{2}-y,-z); (-x,\frac{1}{2}+y,\frac{1}{2}-z)$

Difference Patterson: Coefficients: $|\mathbf{F}_{D}|^{2}$ - $|\mathbf{F}_{N}|^{2}$

Peaks at inter-atomic vectors U,V,W:					
U	V	W	Peak type		
0.404	0.453	0.5	Harker		
0.5	0.048	0.199	Harker		
0.42	0.108	0.986	General (NH)		

Patterson peaks:

¹ ∕₂- 2x	-2y	½ (H)
1/2	¹⁄₂-2y	- 2 z (H)
2 x	1/2	-½-2z (H)
- 2 x	1⁄2	¹ /2-2z (H)
-1/2	¹ / ₂ +2y	- 2z (H)
-½ -2x	2y	½ (H)

H: Harker section peak

Solve for x,y & z using the Harker peaks:

x = 0.048 ; y = 0.774 ; z = -0.099 = 0.900 (translate by 1.0)

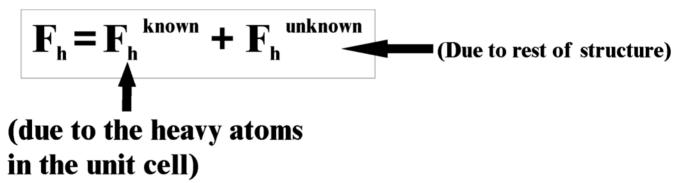
These are the heavy atom coordinates

Patterson Heavy Atom Peaks May Solve Structure

Hypothetical 2 molecule structure: (10 Carbon atoms + 1 Br atom) / molecule Patterson peak $ht \propto Z_A Z_B$

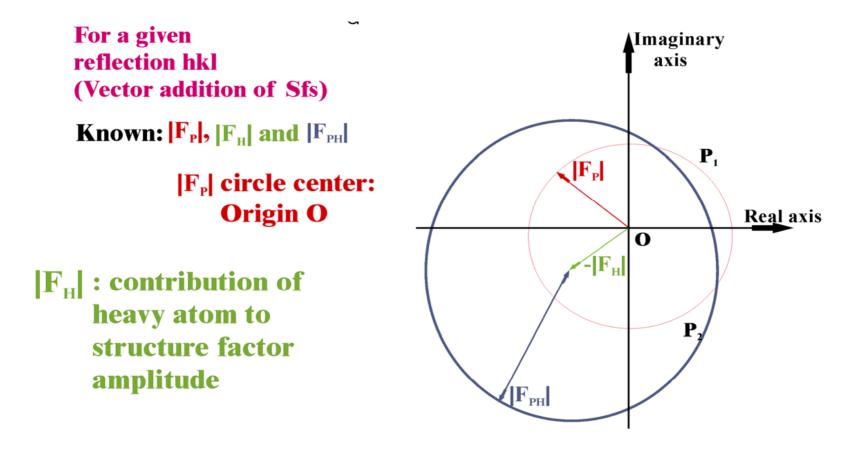
Br-Br peaks will be the highest

Determine the coordinate of Br



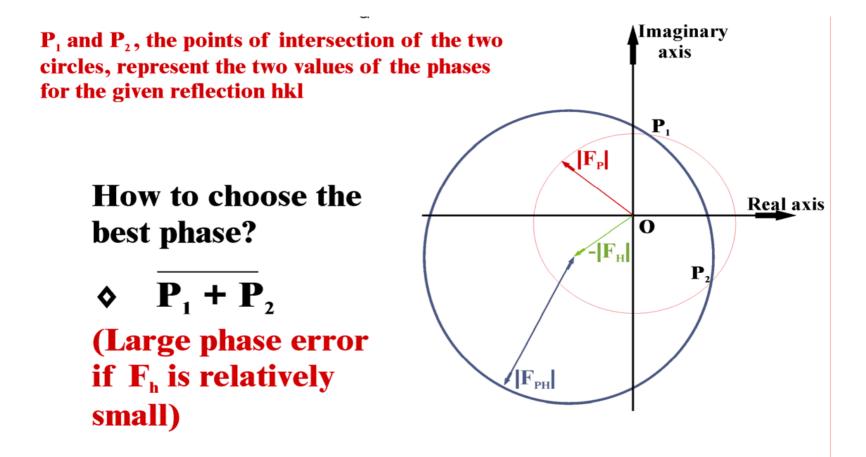
Compute partial electron density map, fill up the missing density and iterate

Single Isomorphous Replacement (SIR)



 P_1 and P_2 , the points of intersection of the two circles, represent the two possible values of the phases for the given reflection hkl $|\mathbf{F}_{PH}|$ circle centered about the end of the vector $-|\mathbf{F}_{H}|$

Resolving Phase Ambiguities in SIR

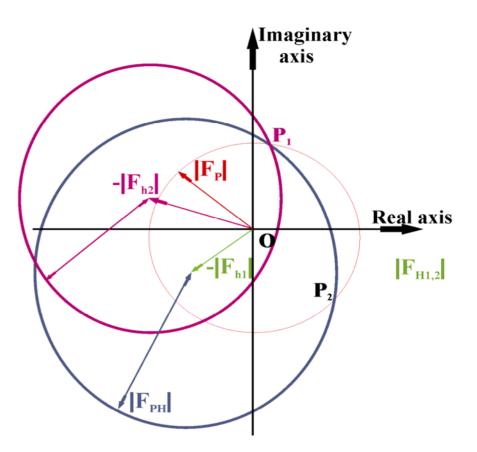


Prepare multiple heavy-atom derviatives

Multiple Isomorphous Replacement (MIR)

Known: $[\mathbf{F}_{P}]$, $[\mathbf{F}_{H1,2}]$ and $[\mathbf{F}_{PH1,2}]$

Contribution of 2 separate heavy atoms to the structure factor amplitude



 \mathbf{P}_{1} represents the only possible phase for the given reflection hkl $|\mathbf{F}_{PH1,2}|$ circles centered about the ends of

the vectors - **F**_{H1,2}

Errors in MIR Phases

Assumptions: 1. Ideal isomorphism 2. Exact heavy atom posititions

But

1. Random and systematic errors in measurement of intensities

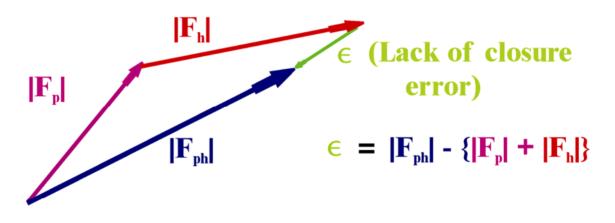
- 2. Errors in estimation of heavy atom positions
- 3. Errors due to lack of isomorphism

How to treat these errors?

Errors in MIR Phases

Assumptions:

- **1. All errors are Gaussian**
- 2. Errors in heavy atom position and that due to lack
- of isomorphism can be considered together

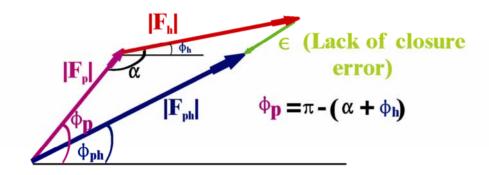


σ_{exp}: Errors in experimental observations
 σ_{fh} : Combined errors in F_h and lack of isomorphism

Errors in MIR Phases

Total error in F_{PH} : $\sigma = [\sigma_{exp}^2 + \sigma_{fh}^2]^{\frac{1}{2}}$ σ_{exp} : Errors in experimental observations σ_{fh} : Combined heavy atom position and lack of isomorphism error

Errors in MIR Phases



Probability distribution $P(\phi) = Cexp(-\epsilon_{20}^{2})$ where C is a normalization constant such that $\int_{1}^{2\pi} P(\phi)d\phi = 1$

Errors in MIR Phases

Probability distribution $P(\phi) = Cexp(-\epsilon_{20}^{2})$

Using

$$\frac{\cos \phi}{2F_{h}F_{ph}} = \frac{F_{h}^{2} + F_{p}^{2} - (F_{ph} + \epsilon)^{2}}{2F_{h}F_{ph}}$$

it is possible to calculate the probability distribution for each phase of each derivative

For all derivatives

$$\mathbf{P}(\phi) = \prod_{j} \mathbf{P}_{j}(\phi) = \mathbf{Cexp} \sum_{j} \left(-\frac{\epsilon_{j}^{2}}{\sigma_{j}^{2}}\right)$$

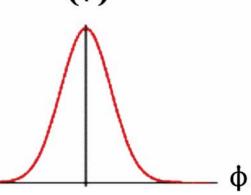
Best MIR Phase

Probability distribution of the MIR phases

$$\mathbf{P}(\phi) = \prod_{j} \mathbf{P}_{j}(\phi) = \mathbf{Cexp} \sum_{j} \left(-\frac{\epsilon_{j}^{2}}{\sigma_{j}^{2}}\right)$$

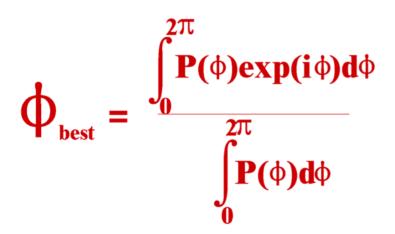
Best phase for a given reflection? $P(\phi)$

For a unimodal distribution, the phase angle ϕ at which P(ϕ) is maximum, is the best phase angle.



Best MIR Phase

Usually P(\$) is bimodal, and the centroid of the phase probability gives the best phase



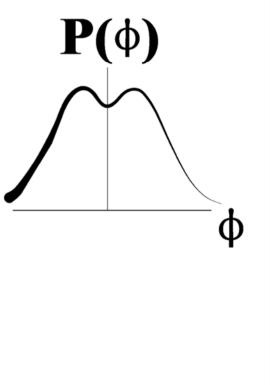
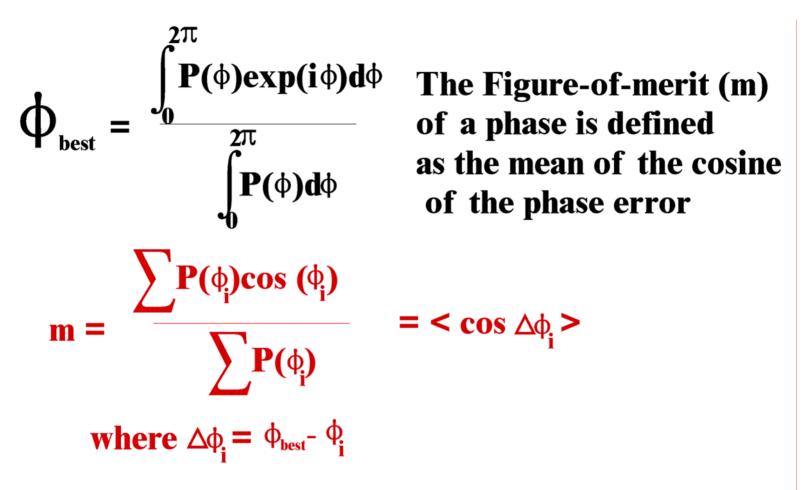


Figure of Merit of a Phase

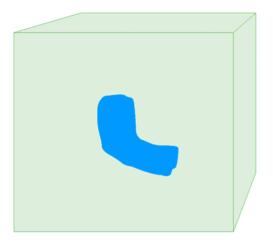


The FOM weighted Fourier coefficient is $mF expi_{best}$

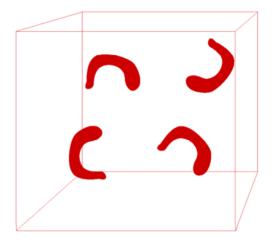
Molecular Replacement

- Similar structure exists (sequence identity) MIR not required
- Orient the known structure as closely as possible to the unknown structure
- Place the known structure as correctly as possible
- Rotational and translational parameters will give a good set of starting phases

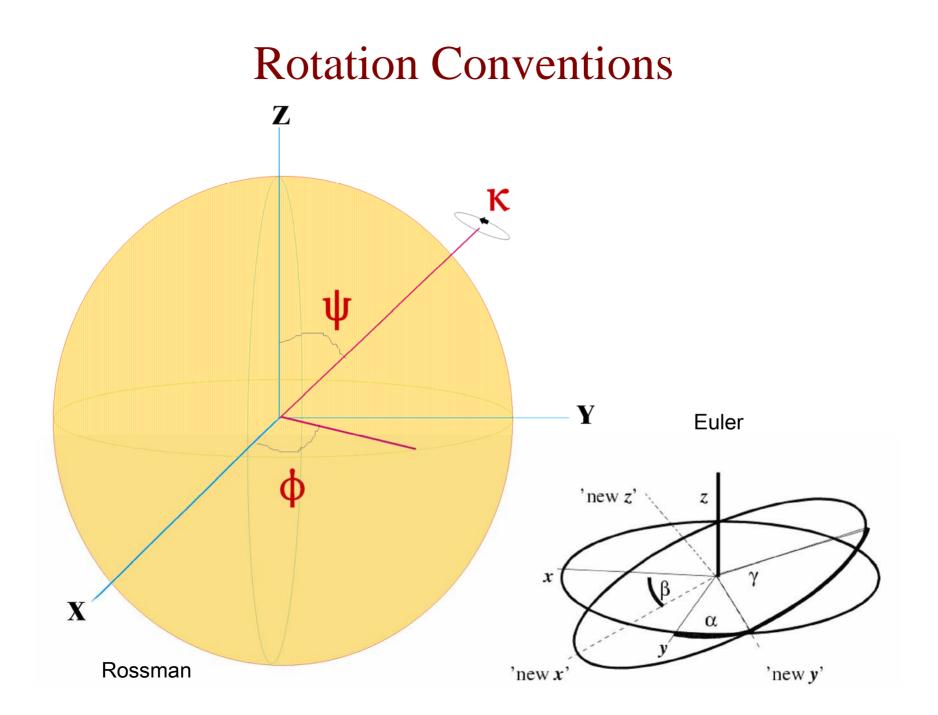
Molecular Replacement



Model Human lysozyme



Data Dinosaur lysozyme



Patterson Rotation Functions

$$\mathbf{R}(\kappa,\phi,\psi) = \int_{\mathbf{r}_{min}}^{\mathbf{r}_{max}} \mathbf{P}_{data}(\mathbf{u}) \mathbf{P}_{model}(\kappa,\phi,\psi,\mathbf{u}) d\mathbf{u}$$

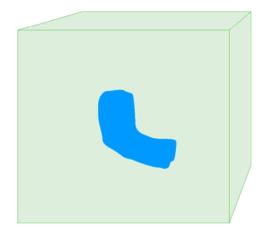
model: Atomic model of known structure (Human lysozyme) data: Unknown structure (Dinosaurus lysozyme)

Real space: Rotation of inter-atomic vectors Reciprocal space: Convolution of SF **2

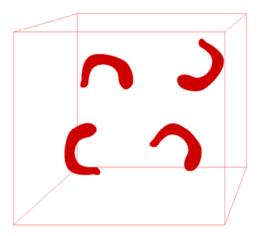
Determine the best($\kappa \Leftrightarrow \psi$) at which R shows a maximum

Orient the model through these angles

Orientation of Unknown Molecule



Model Human lysozyme One asymmetric unit in unit cell (P1 symmetry)



Data Dinosaur lysozyme Crystallographic symmetry

Position of unknown molecule wrt symmetry axes?

Position of Molecule: Translation Function

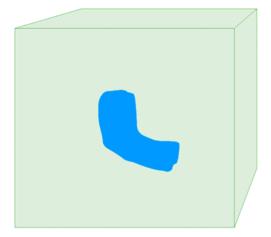
$$T(u) = \int P_{data}(u) P_{model}(u+r) du$$

model: Atomic model of known structure (Human lysozyme) data: Unknown structure (Dinosaurus lysozyme)

Real space: Rotation of inter-atomic vectors Reciprocal space: Convolution of SF **2

Determine the best position r at which T shows a maximum for the oriented model

Intra- and Inter-Molecular Vectors



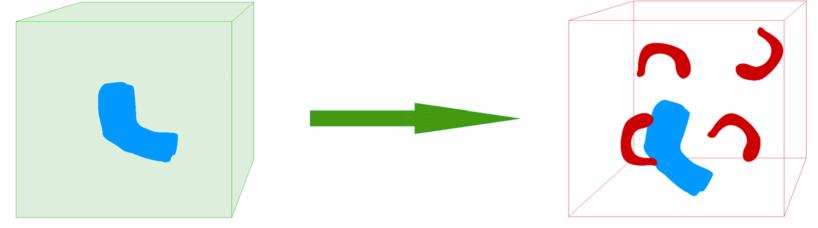
Model Human lysozyme

Data Dinosaur lysozyme Crystallographic symmetry

One asymmetric unit in unit cell (P1 symmetry)

> **Rotation fn: Match intra-molecular vectors Translation fn: Match inter-molecular vectors**

Another Translation Function



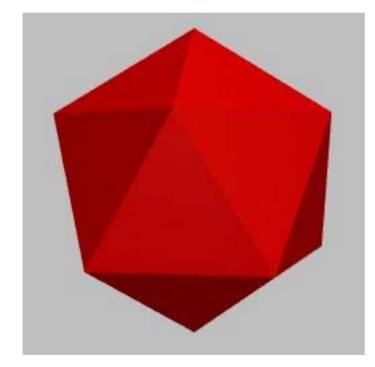
Model Human lysozyme Data Dinosaur lysozyme Crystallographic symmetry

One asymmetric unit in unit cell (P1 symmetry)

Packing function: Discrepancy between the calculated and observed SFs

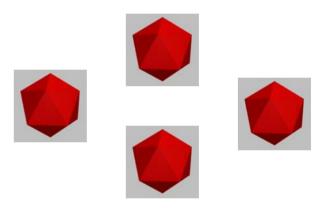
Position which gives the minimum discrepancy factor is the best position of the molecule in the unit cell

Averaging Using Inherent Symmetry



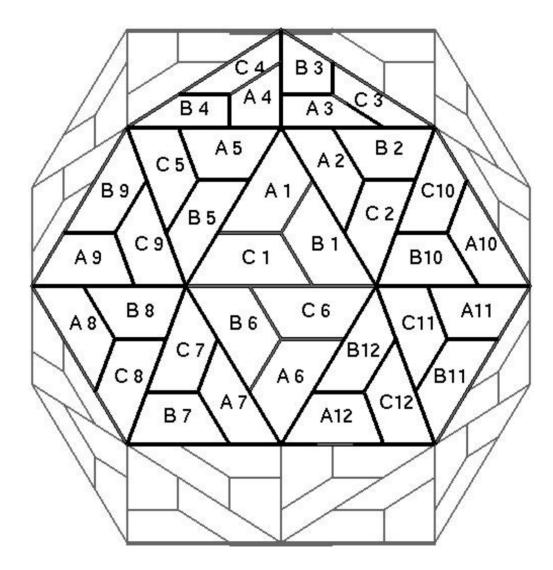
No of faces : 12 (5-folds) No of edges : 30 (2-folds) No of vertices : 20 (3-folds)

Unit cell

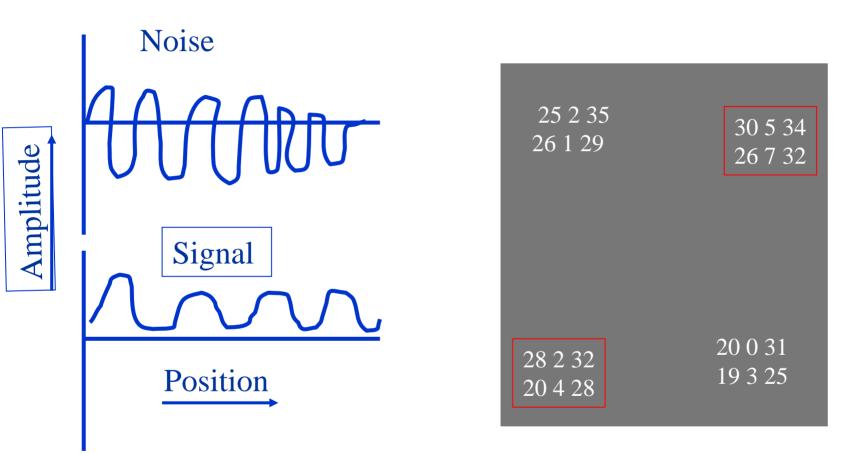


- Particle + unit cell symmetry
- Symmetry preserved in diffraction space

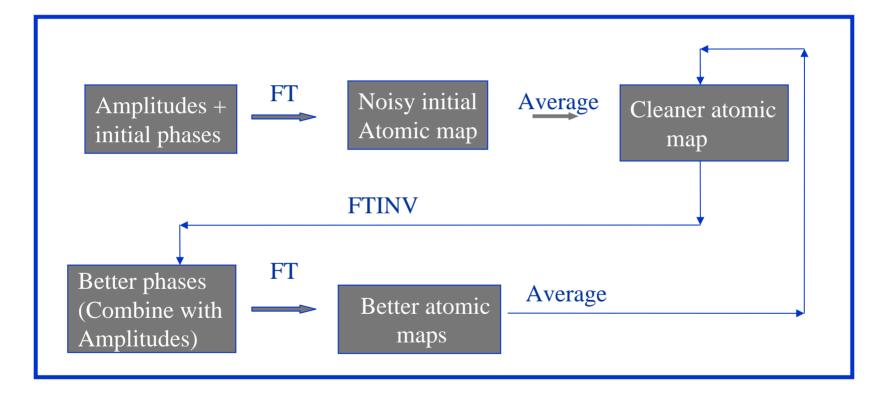
T=3 Icosahedron



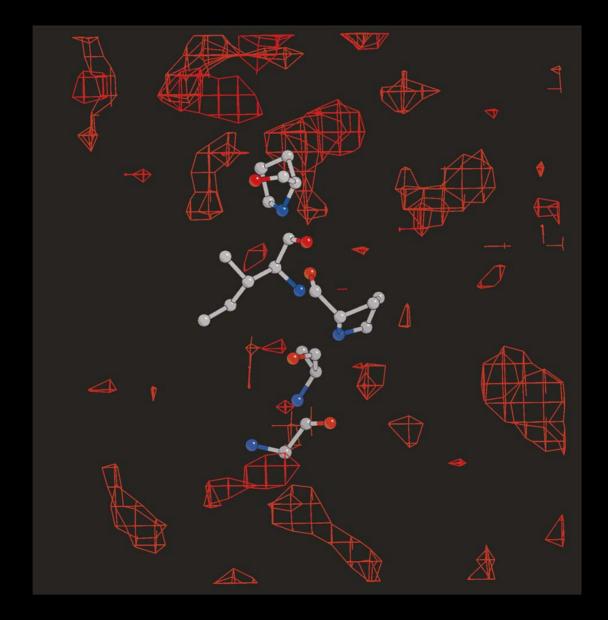
Averaging



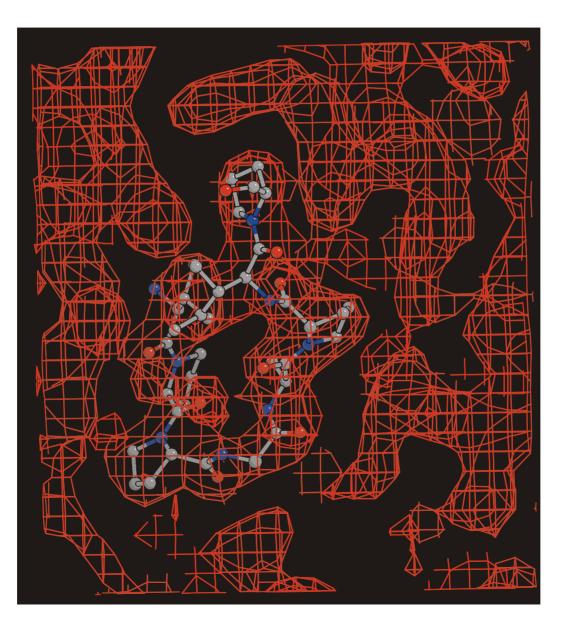
Averaging and Iterative Improvement of Phases



Poor Initial Phases

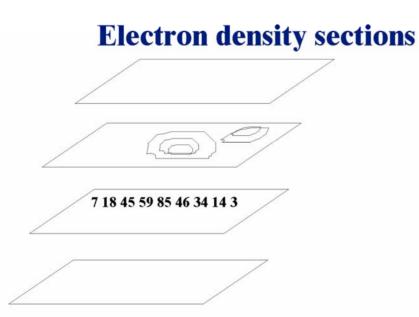


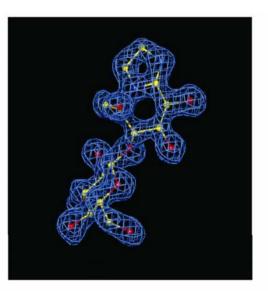
Improved Phases after Cycles of Averaging



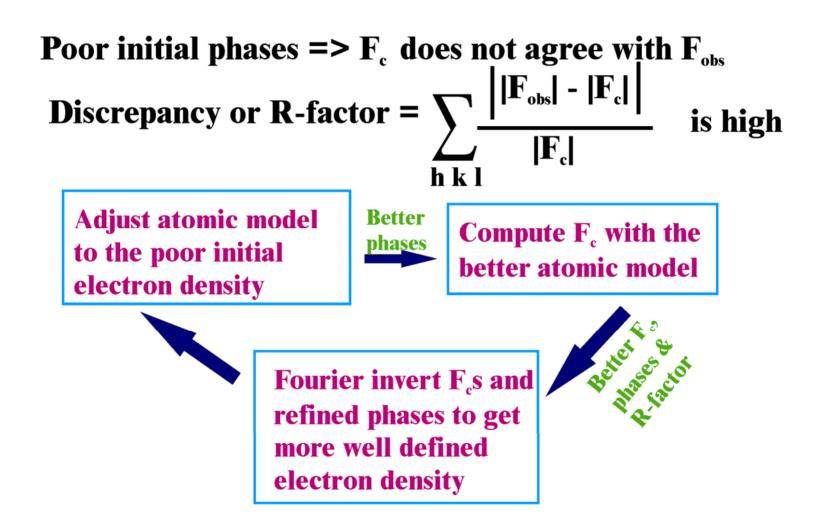
Display of Electron Density

Electron density maps are displayed as iso-contour figures





Refinement of Atomic Model



Refinement is Like Curve Fitting

Fit the best 2-parameter curve through 9 points

No. of observations: 9 No. of parameters: 2

Observational equations

$\mathbf{y}_1 = \mathbf{a}_{11} \mathbf{x}_1 + \mathbf{a}_{12} \mathbf{x}_2$
$\mathbf{y}_2 = \mathbf{a}_{21} \mathbf{x}_1 + \mathbf{a}_{22} \mathbf{x}_2$
•••••
•
•
$\mathbf{y}_{9} = \mathbf{a}_{91}\mathbf{x}_{1} + \mathbf{a}_{92}\mathbf{x}_{2}$

Ax = y, where A is a (9x2) matrix that gives the best estimate of the parameters x to match the observational column vector y

Minimize (y-Ax)^t (y-Ax) to get the best estimates of the parameters x Normal Equations in Refinement

Observational equations: $A\Psi = b$ A: Matrix that calculates the F_cs from the positional and the thermal parameters Ψ

b: Experimentally obtained structure factors $F_{obs}s$ Residual vector: $r = b - A\psi$

Minimize the objective function $\mathbf{M} = \mathbf{r}^{\mathrm{T}}\mathbf{r}$

$$\frac{\partial \mathbf{M}}{\partial \psi} = \mathbf{0} \Rightarrow \mathbf{A}^{\mathsf{t}} \mathbf{A} \psi = \mathbf{A}^{\mathsf{t}} \mathbf{b}$$

Normal equations

Observational equations are non-linear in parameters:

 $A(\delta \psi) = b$ $A^{t}A\delta \psi = A^{t}b$ Conjugate Gradient

Full LSQ Refinement not Possible

Refinement parmeters: Positional and thermal

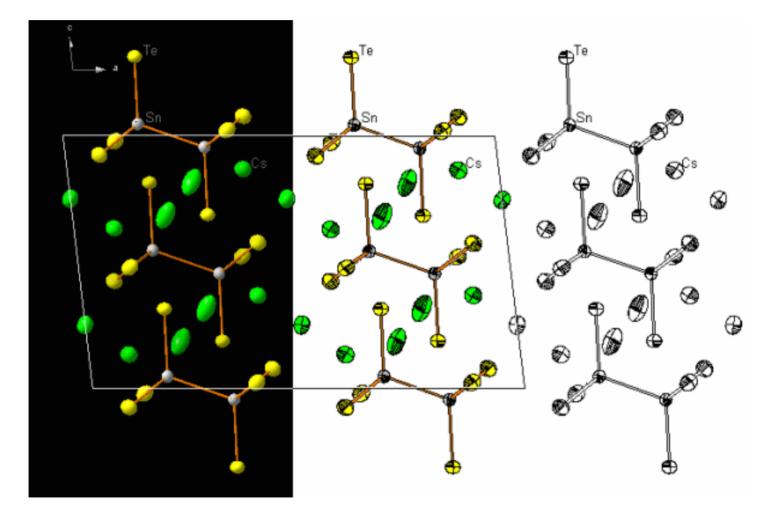
Protein of 30kDa: ~300 residues => ~3000 atoms (3 positional + 1 thermal parameter) / atom 12000 refinement parameters.

Unit cell: 80x70x40 A => ~16000 reflections within the 2A Ewald sphere

Overdeterminacy ratio = # observations / # parameters = 16K/12K ~ 1.4 (Inadequate for LSQ refinement)

Introduce geometric and energy restraints/constraints (Restrained/constrained least squares refinement)

Anisotropic B-valuesThermal Ellipsoids $B_{isotropic} = const * \langle u^2 \rangle$



http://www.crystalimpact.com/diamond/v2feature-ellipsoids.htm

R_{free} in Refinement of Atomic Models

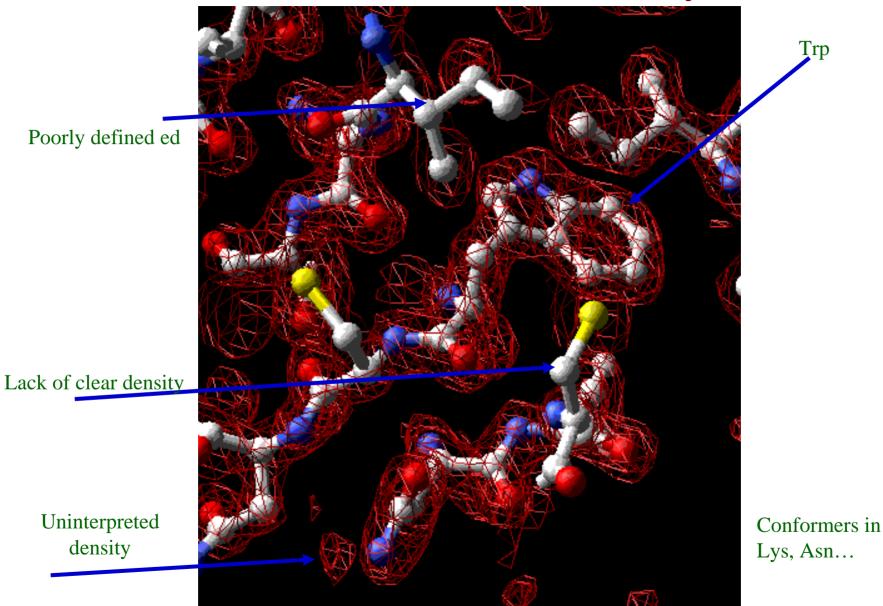
Discrepancy or R-factor =
$$\sum_{i=1}^{n} \frac{||F_{obs}| - |F_{c}||}{|F_{c}|}$$

Q: How good does this model predict the data that it has not seen?
Curve fitting analogy: Does a 4th pt lie on a 3-pt quadratic curve?

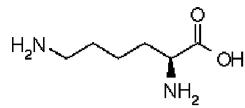
R_{free}: Choose a random 5-10% test data sub-set and calculate R-factor for this test set.

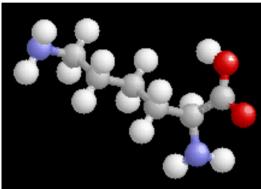
If the model is good, R_{free} should closely follow R of the remaining data set.

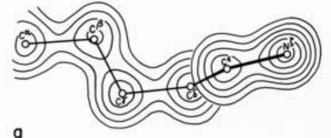
Refined Electron Density

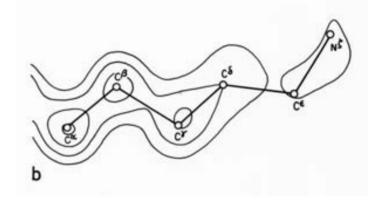


Manual Editing Using Graphics









Disordered Lysine

Manual model editing is necessary

Concluding Remarks

- X-ray diffraction may be analyzed by FT/series. Alternative methods also reported
- Phases may be determined using several methods
- Phases may be improved by averaging and/or refining the atomic model with model fitting
- Well-refined models are essential to correctly interpret biological functions

Resources

- Cantor, R.C. & Schimmel, P.R. (1980). *Biophysical Chemistry Part II: Techniques for the study of biological structure and function*. New York; W.H. Freeman & Co, Chapter 13.
- Blundell, T.L. & Johnson, L.N. (1976). *Protein Crystallography*. London; Academic Press.
- Stout, G.H. & Jensen, L.M. (1968). *X-ray Structure Determination: A* Practical Guide. New York: Macmillan