

## The University of Texas

School of Health Information

# Complex Numbers, Convolution, Fourier Transform 

For students of HI 6001-125
"Computational Structural Biology"

Willy Wriggers, Ph.D.
School of Health Information Sciences
http://biomachina.org/courses/structures/01.html

## Complex Numbers: Review

A complex number is one of the form:

$$
a+b i
$$

where

$$
i=\sqrt{-1}
$$

a: real part
$b$ : imaginary part

## Complex Arithmetic

When you add two complex numbers, the real and imaginary parts add independently:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

When you multiply two complex numbers, you crossmultiply them like you would polynomials:

$$
\begin{aligned}
(a+b i) \times(c+d i) & =a c+a(d i)+(b i) c+(b i)(d i) \\
& =a c+(a d+b c) i+(b d)\left(i^{2}\right) \\
& =a c+(a d+b c) i-b d \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

## Polynomial Multiplication

$$
\begin{aligned}
& p_{1}(x)=3 x^{2}+2 x+4 \\
& p_{2}(x)=2 x^{2}+5 x+1
\end{aligned}
$$

$$
p_{1}(x) p_{2}(x)=x^{4}+\ldots x^{3}+\ldots x^{2}+\ldots x+
$$

## The Complex Plane

Complex numbers can be thought of as vectors in the complex plane with basis vectors $(1,0)$ and $(0, i)$ :


## Magnitude and Phase

The length of a complex number is its magnitude:

$$
|a+b i|=\sqrt{a^{2}+b^{2}}
$$

The angle from the real-number axis is its phase:

$$
\phi(a+b i)=\tan ^{-1}(b / a)
$$

When you multiply two complex numbers, their magnitudes multiply

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|
$$

And their phases add

$$
\phi\left(z_{1} z_{2}\right)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)
$$

## The Complex Plane: Magnitude and Phase



## Complex Conjugates

If $z=a+b i$ is a complex number, then its complex conjugate is:

$$
z^{*}=a-b i
$$

The complex conjugate $z^{*}$ has the same magnitude but opposite phase
When you add $z$ to $z^{*}$, the imaginary parts cancel and you get a real number:

$$
(a+b i)+(a-b i)=2 a
$$

When you multiply $z$ to $z^{*}$, you get the real number equal to $|z|^{2}$ :

$$
(a+b i)(a-b i)=a^{2}-(b i)^{2}=a^{2}+b^{2}
$$

## Complex Division

If $z_{1}=a+b i, z_{2}=c+d i, z=z_{1} / z_{2}$,
the division can be accomplished by multiplying the numerator and denominator by the complex conjugate of the denominator:

$$
z=\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)}=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+i\left(\frac{b c-a d}{c^{2}+d^{2}}\right)
$$

## Euler's Formula

- Remember that under complex multiplication:
- Magnitudes multiply
- Phases add
- Under what other quantity/operation does multiplication result in an addition?
- Exponentiation: $c^{a} c^{b}=c^{a+b}$ (for some constant $c$ )
- If we have two numbers of the form $m \cdot c^{a}$ (where $c$ is some constant), then multiplying we get:

$$
\left(m \cdot c^{a}\right)\left(n \cdot c^{b}\right)=m \cdot n \cdot c^{a+b}
$$

- What constant $c$ can represent complex numbers?


## Euler's Formula

- Any complex number can be represented using Euler's formula:

$$
z=|z| e^{i \phi(z)}=|z| \cos (\phi)+|z| \sin (\phi) i=a+b i
$$



## Powers of Complex Numbers

Suppose that we take a complex number

$$
z=|z| e^{i \phi(z)}
$$

and raise it to some power

$$
\begin{aligned}
z^{n} & =\left[|z| e^{i \phi(z)}\right]^{n} \\
& =|z|^{n} e^{i n \phi(z)}
\end{aligned}
$$

$z^{n}$ has magnitude $|z|^{n}$ and phase $n \phi(z)$

## Powers of Complex Numbers: Example

- What is $i^{n}$ for various $n$ ?



## Powers of Complex Numbers: Example

- What is $\left(e^{i \pi / 4}\right)^{n}$ for various $n$ ?



## Harmonic Functions

- What does $x(t)=e^{i \omega t}$ look like?
- $x(t)$ is a harmonic function (a building block for later analysis)



## Harmonic Functions as Sinusoids

| Real Part | Imaginary Part |
| :---: | :---: |
| $\mathfrak{R}\left(e^{i \omega t}\right)$ | $\mathfrak{J}\left(e^{i \omega t}\right)$ |
| $\cos (\omega t)$ | $\sin (\omega t)$ |

## Questions: Complex Numbers

## Convolution

Convolution of an input $x(t)$ with the impulse response $h(t)$ is written as

$$
x(t) * h(t)
$$

That is to say,

$$
x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

## Convolution of Discrete Functions

For a discrete function $x[j]$ and impulse response $h[j]$ :

$$
x[j] * h[j]=\sum_{k} x[k] \cdot h[j-k]
$$

## One Way to Think of Convolution

$$
\begin{aligned}
& x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& x[j] * h[j]=\sum_{k} x[k] \cdot h[j-k]
\end{aligned}
$$

Think of it this way:

- Shift a copy of $h$ to each position $t$ (or discrete position $k$ )
- Multiply by the value at that position $x(t)$ (or discrete sample $x[k])$
- Add shifted, multiplied copies for all $t$ (or discrete $k$ )


## Example: Convolution - One way

$$
\begin{aligned}
& x[j]=\left[\begin{array}{llllll}
1 & 4 & 3 & 1 & 2 & ] \\
h[j] & =\left[\begin{array}{llllll} 
& 1 & 2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& x[0] h[j-0]=[\ldots-\ldots-\ldots-\ldots] \\
& x[1] h[j-1]=[\text { _ - - - - _ - _ ] } \\
& x[2] h[j-2]=[\text { _ _ _ _ _ _ _ _ ] } \\
& x[3] h[j-3]=[\text { - _ - - - _ - _ ] } \\
& x[4] h[j-4]=[\text { _ _ _ _ _ _ _ _ }] \\
& x[j] * h[j]=\sum_{k} x[k] h[j-k] \\
& =\left[\_\ldots-\ldots \ldots \ldots\right]
\end{aligned}
$$

## Example: Convolution - One way

$$
\begin{aligned}
& x[j]=\left[\begin{array}{llllll} 
& 1 & 4 & 3 & 1 & 2 \\
] \\
h[j] & =\left[\begin{array}{llllll} 
& 1 & 2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
x[0] h[j-0] & =\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & - \\
\hline
\end{array}\right]--\frac{-}{l}
\end{array}\right]
$$

## Example: Convolution - One way

$$
\begin{aligned}
& x[j]=\left[\begin{array}{llllll}
1 & 4 & 3 & 1 & 2 & ] \\
h[j] & =\left[\begin{array}{llllll} 
& 1 & 2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.x[0] h[j-0]=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right] \ldots \ldots \ldots\right] \\
& x[1] h[j-1]=\left[\begin{array}{llllllll}
\ldots & 4 & 8 & 12 & 16 & 20 & \ldots & \ldots
\end{array}\right] \\
& x[2] h[j-2]=[\text { _ _ _ _ _ _ _ _ ] } \\
& x[3] h[j-3]=[\text { _ _ - _ _ _ _ _ ] } \\
& x[4] h[j-4]=[\text { _ _ _ _ _ _ _ _ }] \\
& x[j] * h[j]=\sum_{k} x[k] h[j-k] \\
& =\left[\_-\ldots-\ldots-\ldots \ldots\right]
\end{aligned}
$$

## Example: Convolution - One way

$$
\begin{aligned}
& x[j]=\left[\begin{array}{llllll}
1 & 4 & 3 & 1 & 2 & ] \\
h[j] & =\left[\begin{array}{llllll} 
& 1 & 2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.x[0] h[j-0]=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right] \ldots \ldots \ldots\right] \\
& x[1] h[j-1]=\left[\begin{array}{llllllll}
\ldots & 4 & 8 & 12 & 16 & 20 & \ldots & \ldots
\end{array}\right] \\
& x[2] h[j-2]=\left[\begin{array}{lllllll}
\ldots & 3 & 6 & 9 & 12 & 15 & \ldots
\end{array}\right] \\
& x[3] h[j-3]=[\text { _ _ - _ _ _ _ _ ] } \\
& x[4] h[j-4]=[\text { _ _ _ _ _ _ _ _ }] \\
& x[j] * h[j]=\sum_{k} x[k] h[j-k] \\
& =\left[\_-\ldots \ldots \ldots \ldots \ldots\right]
\end{aligned}
$$

## Example: Convolution - One way

$$
\begin{aligned}
& x[j]=\left[\begin{array}{llllll}
1 & 4 & 3 & 1 & 2 & ] \\
h[j]=\left[\begin{array}{llllll} 
& 1 & 2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.x[0] h[j-0]=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right] \ldots \ldots \ldots\right] \\
& x[1] h[j-1]=\left[\begin{array}{llllllll}
\ldots & 4 & 8 & 12 & 16 & 20 & \ldots & \ldots
\end{array}\right] \\
& x[2] h[j-2]=\left[\begin{array}{lllllll}
\ldots & 3 & 6 & 9 & 12 & 15 & \ldots
\end{array}\right] \\
& x[3] h[j-3]=\left[\begin{array}{lllllll}
{[ } & \ldots & 1 & 2 & 3 & 4 & 5
\end{array}\right] \\
& x[4] h[j-4]=[\ldots-\ldots \text { _ _ _ _ _ ] } \\
& x[j] * h[j]=\sum_{k} x[k] h[j-k] \\
& =\left[\_-\ldots \ldots \ldots \ldots \ldots\right]
\end{aligned}
$$

## Example: Convolution - One way

$$
\begin{aligned}
& x[j]=\left[\begin{array}{llllll}
1 & 4 & 3 & 1 & 2 & ] \\
h[j] & =\left[\begin{array}{llllll} 
& 1 & 2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.x[0] h[j-0]=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right] \ldots \ldots \ldots\right] \\
& x[1] h[j-1]=\left[\begin{array}{llllllll}
\ldots & 4 & 8 & 12 & 16 & 20 & \ldots & \ldots
\end{array}\right] \\
& x[2] h[j-2]=\left[\begin{array}{lllllll}
\ldots & 3 & 6 & 9 & 12 & 15 & \ldots
\end{array}\right] \\
& x[3] h[j-3]=\left[\begin{array}{lllllll}
\ldots & \ldots & 2 & 3 & 4 & 5 & \ldots
\end{array}\right] \\
& x[4] h[j-4]=\left[\begin{array}{lllllll} 
\\
\ldots
\end{array} \ldots\right. \\
& x[j] * h[j]=\sum_{k} x[k] h[j-k] \\
& =\left[\_\ldots-\ldots \ldots \ldots\right]
\end{aligned}
$$

## Example: Convolution - One way

$$
\begin{aligned}
& x[j]=\left[\begin{array}{llllll}
1 & 4 & 3 & 1 & 2 & ] \\
h[j] & =\left[\begin{array}{llllll} 
& 1 & 2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.x[0] h[j-0]=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right] \ldots \ldots \ldots\right] \\
& x[1] h[j-1]=\left[\begin{array}{llllllll}
\ldots & 4 & 8 & 12 & 16 & 20 & \ldots & \ldots
\end{array}\right] \\
& x[2] h[j-2]=\left[\begin{array}{lllllll}
\ldots & 3 & 6 & 9 & 12 & 15 & \ldots
\end{array}\right] \\
& x[3] h[j-3]=\left[\begin{array}{llllllll}
\ldots & 1 & 2 & 3 & 4 & 5 & \ldots
\end{array}\right] \\
& x[4] h[j-4]=\left[\begin{array}{lllllll} 
\\
\ldots & 2 & 4 & 6 & 8 & 10
\end{array}\right] \\
& x[j] * h[j]=\sum_{k} x[k] h[j-k] \\
& =\left[\begin{array}{llllllllll}
1 & 6 & 14 & 23 & 34 & 39 & 25 & 13 & 10 & ]
\end{array}\right]
\end{aligned}
$$

## Another Way to Look at Convolution

$$
x[j] * h[j]=\sum_{k} x[k] \cdot h[j-k]
$$

Think of it this way:

- Flip the function $h$ around zero
- Shift a copy to output position $j$
- Point-wise multiply for each position $k$ the value of the function $x$ and the flipped and shifted copy of $h$
- Add for all $k$ and write that value at position $j$


## Convolution in Higher Dimensions

In one dimension:

$$
x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

In two dimensions:

$$
I(x, y) * h(x, y)=\int^{\infty} \int^{\infty} I\left(\tau_{x}, \tau_{y}\right) h\left(x-\tau_{x}, y-\tau_{y}\right) d \tau_{x} d \tau_{y}
$$

Or, in discrete form: $-\infty-\infty$

$$
I[x, y] * h[x, y]=\sum_{k} \sum_{j} I[j, k] h[x-j, y-k]
$$

## Example: Two-Dimensional Convolution


see homework assignment!

## Properties of Convolution

- Commutative: $f * g=g * f$
- Associative: $f *(g * h)=(f * g) * h$
- Distributive over addition: $f *(g+h)=f * g+f * h$
- Derivative:

$$
\frac{d}{d t}(f * g)=f^{\prime} * g+f * g^{\prime}
$$

Convolution has the same mathematical properties as multiplication
(This is no coincidence)

## Useful Functions

- Square: $\Pi_{a}(t)$
- Triangle: $\Lambda_{a}(t)$
- Gaussian: $G(t, s)$
- Step: $u(t)$
- Impulse/Delta: $\delta(t)$
- Comb (Shah Function): $\operatorname{comb}_{h}(t)$

Each has their two- or three-dimensional equivalent.

## Square

$$
\Pi_{a}(t)= \begin{cases}1 & \text { if }|t| \leq a \\ 0 & \text { otherwise }\end{cases}
$$



What does $f(t) * \Pi_{a}(t)$ do to a signal $f(t)$ ?
What is $\Pi_{a}(t) * \Pi_{a}(t)$ ?

## Triangle

$$
\Lambda_{a}(t)= \begin{cases}1-|t / a| & \text { if }|t| \leq a \\ 0 & \text { otherwise }\end{cases}
$$



## Gaussian

Gaussian: maximum value $=1$

$$
G(t, \sigma)=e^{-t^{2} / 2 \sigma^{2}}
$$

Normalized Gaussian: area $=1$

$$
G(t, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}}
$$

Convolving a Gaussian with another:


$$
G\left(t, \sigma_{1}\right) * G\left(t, \sigma_{2}\right)=G\left(t, \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)
$$

## Step Function

$$
u(t)= \begin{cases}1 & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$



What is the derivative of a step function?

## Impulse/Delta Function

- We've seen the delta function before:

$$
\delta(t)=\left\{\begin{array}{ll}
\infty & \text { if } t=0 \\
0 & \text { otherwise }
\end{array} \text { and } \int_{-\infty}^{\infty} \delta(t) d t=1\right.
$$

- Shifted Delta function: impulse at $\mathrm{t}=\mathrm{k}$


$$
\delta(t-k)= \begin{cases}\infty & \text { if } t=k \\ 0 & \text { otherwise }\end{cases}
$$

- What is a function $f(t)$ convolved with $\delta(t)$ ?

- What is a function $f(t)$ convolved with $\delta(t-k)$ ?


## Comb (Shah) Function

A set of equally-spaced impulses: also called an impulse train

$$
\operatorname{comb}_{h}(t)=\sum_{k} \delta(t-h k)
$$

$h$ is the spacing
What is $f(t) * \operatorname{comb}_{h}(t) ?$


## Convolution Filtering

- Convolution is useful for modeling the behavior of filters
- It is also useful to do ourselves to produce a desired effect
- When we do it ourselves, we get to choose the function that the input will be convolved with
- This function that is convolved with the input is called the convolution kernel


## Convolution Filtering: Averaging

Can use a square function ("box filter") or Gaussian to locally average the signal/image

- Square (box) function: uniform averaging
- Gaussian: center-weighted averaging

Both of these blur the signal or image

## Questions: Convolution

## Frequency Analysis

Here, we write a square wave as a sum of sine waves:


- Fourier Domain
- Signals (1D, 2D, ...) decomposed into sum of signals with different frequencies



## Frequency Analysis

- To use transfer functions, we must first decompose a signal into its component frequencies
- Basic idea: any signal can be written as the sum of phase-shifted sines and cosines of different frequencies
- The mathematical tool for doing this is the Fourier Transform

image

wave magnitudes

wave phases


## General Idea of Transforms

Given an orthonormal (orthogonal, unit length) basis set of vectors $\left\{\bar{e}_{k}\right\}$ :

Any vector in the space spanned by this basis set can be represented as a weighted sum of those basis vectors:

$$
\bar{v}=\sum_{k} a_{k} \bar{e}_{k}
$$

To get a vector's weight relative to a particular basis vector $\bar{e}_{k}$ :

$$
a_{k}=\bar{v} \cdot \bar{e}_{k}
$$

Thus, the vector can be transformed into the weights $a_{k}$
Likewise, the transformation can be inverted by turning the weights back into the vector

## Linear Algebra with Functions

The inner (dot) product of two vectors is the sum of the pointwise multiplication of each component:

$$
\bar{u} \cdot \bar{v}=\sum_{j} \bar{u}[j] \cdot \bar{v}[j]
$$

Can't we do the same thing with functions?

$$
f \cdot g=\int_{-\infty}^{\infty} f(x) g^{*}(x) d x
$$

Functions satisfy all of the linear algebraic requirements of vectors

## Transforms with Functions

Just as we transformed vectors, we can also transform functions:

|  | Vectors $\left\{\bar{e}_{k}[j]\right\}$ | Functions $\left\{e_{k}(t)\right\}$ |
| :---: | :---: | :---: |
| Transform | $a_{k}=\bar{v} \cdot \bar{e}_{k}=\sum_{j} \bar{v}[j] \cdot \bar{e}_{k}[j]$ | $a_{k}=f \cdot e_{k}=\int_{-\infty}^{\infty} f(t) e_{k}^{*}(t) d t$ |
| Inverse | $\bar{v}=\sum_{k} a_{k} \bar{e}_{k}$ | $f(t)=\sum_{k} a_{k} e_{k}(t)$ |

## Basis Set: Generalized Harmonics

The set of generalized harmonics we discussed earlier form an orthonormal basis set for functions:

$$
\left\{e^{i 2 \pi \Delta t}\right\}
$$

where each harmonic has a different frequency $s$

Remember:

$$
e^{i 2 \pi s t}=\cos (2 \pi s t)+i \sin (2 \pi s t)
$$

The real part is a cosine of frequency $s$
The imaginary part is a sine of frequency $s$

## The Fourier Series

|  | All Functions $\left\{e_{k}(t)\right\}$ | Harmonics $\left\{e^{i 2 \pi s t}\right\}$ |
| :---: | :---: | :---: |
| Transform | $a_{k}=f \cdot e_{k}=\int_{-\infty}^{\infty} f(t) e_{k}^{*}(t) d t$ | $a_{k}=f \cdot e^{i 2 \pi s_{k} t}$ |
| Inverse | $f(t)=\sum_{k} a_{k} e_{k}(t)$ | $f(t)=\sum_{-\infty}^{\infty} a_{k} e^{i 2 \pi s_{k} t}$ |

## The Fourier Transform

Most tasks need an infinite number of basis functions (frequencies), each with their own weight $F(s)$ :

|  | Fourier Series | Fourier Transform |
| :---: | :---: | :---: |
| Transform | $a_{k}=f \cdot e^{i 2 \pi s_{k} t}$ | $F(s)=f \cdot e^{i 2 \pi s t}$ |
|  | $=\int_{-\infty}^{\infty} f(t) e^{-i 2 \pi s_{k} t} d t$ | $=\int_{-\infty}^{\infty} f(t) e^{-i 2 \pi s t} d t$ |
| Inverse | $f(t)=\sum_{k} a_{k} e^{i 2 \pi s_{k} t}$ | $f(t)=\int_{-\infty}^{\infty} F(s) e^{i 2 \pi s_{k} t} d s$ |

## The Fourier Transform

To get the weights (amount of each frequency): $\mathcal{F}$

$$
F(s)=\int_{-\infty}^{\infty} f(t) e^{-i 2 \pi s t} d t
$$

$F(s)$ is the Fourier Transform of $f(t): \mathcal{F}(f(t))=F(s)$

To convert weights back into a signal (invert the transform):

$$
f(t)=\int_{-\infty}^{\infty} F(s) e^{i 2 \pi s t} d s
$$

$f(t)$ is the Inverse Fourier Transform of $F(s): F^{-1}(F(s))=f(t)$

## Notation

Let $F$ denote the Fourier Transform:

$$
F=\mathscr{F}(f)
$$

Let $\mathcal{F}^{-1}$ denote the Inverse Fourier Transform:

$$
f=F^{-1}(F)
$$

## How to Interpret the Weights F(s)

The weights $F(s)$ are complex numbers:

| Real part | How much of a cosine of frequency $s$ you need |
| :---: | :---: |
| Imaginary part | How much of a sine of frequency $s$ you need |
| Magnitude | How much of a sinusoid of frequency $s$ you need |
| Phase | What phase that sinusoid needs to be |

## Magnitude and Phase

Remember: complex numbers can be thought of in two ways: (real, imaginary) or (magnitude, phase)

Magnitude: $\quad|F|=\sqrt{\mathfrak{R}(F)^{2}+\mathfrak{J}(F)^{2}}$
Phase:

$$
\phi(F)=\arctan \left(\frac{\mathfrak{R}(F)}{\mathfrak{J}(F)}\right)
$$


image

$|F|$

$\phi(F)$

## Periodic Objects on a Grid: Crystals

- Periodic objects with period N :
- Underlying frequencies must also repeat over the period $N$
- Each component frequency must be a multiple of the frequency of the periodic object itself:

$$
\frac{1}{N}, \frac{2}{N}, \frac{3}{N}, \cdots
$$

- If the signal is discrete:
- Highest frequency is one unit: period repeats after a single sample
- No more than $N$ components

$$
\frac{1}{N}, \frac{2}{N}, \frac{3}{N}, \cdots \frac{N}{N}
$$

## Discrete Fourier Transform (DFT)

If we treat a discrete signal with $N$ samples as one period of an infinite periodic signal, then

$$
F[s]=\frac{1}{N} \sum_{t=0}^{N-1} f[t] e^{-i 2 \pi s t / N}
$$

and

$$
f[t]=\sum_{s=0}^{N-1} F[s] e^{i 2 \pi s t / N}
$$

Note: For a periodic function, the discrete Fourier transform is the same as the continuous transform

- We give up nothing in going from a continuous to a discrete transform as long as the function is periodic


## Normalizing DFTs: Conventions

| Basis <br> Function | Transform | Inverse |
| :---: | :---: | :---: |
| $e^{i 2 \pi s t / N}$ | $F[s]=\frac{1}{N} \sum_{t=0}^{N-1} f[t] e^{-i 2 \pi s t / N}$ | $f[t]=\sum_{s=0}^{N-1} F[s] e^{i 2 \pi s t / N}$ |
| $\frac{1}{\sqrt{N}} e^{i 2 \pi s t / N}$ | $F[s]=\frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} f[t] e^{-i 2 \pi s t / N}$ | $f[t]=\frac{1}{\sqrt{N}} \sum_{s=0}^{N-1} F[s] e^{i 2 \pi s t / N}$ |
| $\frac{1}{N} e^{i 2 \pi s t / N}$ | $F[s]=\sum_{t=0}^{N-1} f[t] e^{-i 2 \pi s t / N}$ | $f[t]=\frac{1}{N} \sum_{s=0}^{N-1} F[s] e^{i 2 \pi s t / N}$ |

## Discrete Fourier Transform (DFT)

$$
F[s]=\frac{1}{N} \sum_{t=0}^{N-1} f[t] e^{-i 2 \pi s t / N}
$$

$$
f[t]=\sum_{s=0}^{N-1} F[s] e^{i 2 \pi s t / N}
$$

Questions:

- What would the code for the discrete Fourier transform look like?
- What would its computational complexity be?


## Fast Fourier Transform

developed by Tukey and Cooley in 1965
If we let

$$
W_{N}=e^{-i 2 \pi / N}
$$

the Discrete Fourier Transform can be written

$$
F[s]=\frac{1}{N} \sum_{t=0}^{N-1} f[t] \cdot W_{N}^{s t}
$$

If $N$ is a multiple of $2, N=2 M$ for some positive integer $M$, substituting $2 M$ for $N$ gives

$$
F[s]=\frac{1}{2 M} \sum_{t=0}^{2 M-1} f[t] \cdot W_{2 M}^{s t}
$$

## Fast Fourier Transform

Separating out the $M$ even and $M$ odd terms,

$$
F[s]=\frac{1}{2}\left\{\frac{1}{M} \sum_{t=0}^{M-1} f[2 t] \cdot W_{2 M}^{s(2 t)}+\frac{1}{M} \sum_{t=0}^{M-1} f[2 t+1] \cdot W_{2 M}^{s(2 t+1)}\right\}
$$

Notice that

$$
W_{2 M}^{s(2 t)}=e^{-i 2 \pi s(2 t) / 2 M}=e^{-i 2 \pi s t / M}=W_{M}^{s t}
$$

and

$$
W_{2 M}^{s(2 t+1)}=e^{-i 2 \pi s(2 t+1) / 2 M}=e^{-i 2 \pi s t / M} e^{-i 2 \pi s / 2 M}=W_{M}^{s t} W_{2 M}^{s}
$$

So,

$$
F[s]=\frac{1}{2}\left\{\frac{1}{M} \sum_{t=0}^{M-1} f[2 t] \cdot W_{M}^{s t}+\frac{1}{M} \sum_{t=0}^{M-1} f[2 t+1] \cdot W_{M}^{s t} W_{2 M}^{s}\right\}
$$

## Fast Fourier Transform

$$
F[s]=\frac{1}{2}\left\{\frac{1}{M} \sum_{t=0}^{M-1} f[2 t] \cdot W_{M}^{s t}+\frac{1}{M} \sum_{t=0}^{M-1} f[2 t+1] \cdot W_{M}^{s t} W_{2 M}^{s}\right\}
$$

Can be written as

$$
F[s]=\frac{1}{2}\left\{F_{\text {even }}(s)+F_{\text {odd }}(s) W_{2 M}^{s}\right\}
$$

We can use this for the first $M$ terms of the Fourier transform of $2 M$ items, then we can re-use these values to compute the last $M$ terms as follows:

$$
F[s+M]=\frac{1}{2}\left\{F_{\text {even }}(s)-F_{\text {odd }}(s) W_{2 M}^{s}\right\}
$$

## Fast Fourier Transform

If $M$ is itself a multiple of 2, do it again!
If $N$ is a power of 2 , recursively subdivide until you have one element, which is its own Fourier Transform

```
ComplexSignal FFT(ComplexSignal f) {
    if (length(f) == 1) return f;
    M = length(f) / 2;
    W_2M = e^(-I * 2 * Pi / M) // A complex value.
    even = FFT(EvenTerms(f));
    odd = FFT( OddTerms(f));
    for (s = 0; s < M; s++) {
        result[s ] = even[s] + W_2M^s * odd[s];
        result[s+M] = even[s] - W_2M^s * odd[s];
    }
}
```


## Fast Fourier Transform

Computational Complexity:

| Discrete Fourier Transform | $\rightarrow O\left(N^{2}\right)$ |
| :--- | :--- | :--- |
| Fast Fourier Transform | $\rightarrow O(N \log N)$ |

Remember: The FFT is just a faster algorithm for computing the DFT - it does not produce a different result

## Fourier Pairs

Use the Fourier Transform, denoted $\mathcal{F}$, to get the weights for each harmonic component in a signal:

$$
F(s)=F(f(t))=\int_{-\infty}^{\infty} f(t) e^{-i 2 \pi s t} d t
$$

And use the Inverse Fourier Transform, denoted $\mathcal{F}^{-1}$, to recombine the weighted harmonics into the original signal:

$$
f(t)=F^{-1}(F(s))=\int_{-\infty}^{\infty} F(s) e^{i 2 \pi s t} d s
$$

We write a signal and its transform as a Fourier Transform pair:

$$
f(t) \leftrightarrow F(s)
$$

## Sinusoids

Spatial Domain $f(t)$
$\cos (2 \pi \omega t)$
$\sin (2 \pi \omega t)$

Frequency Domain
$F(s)$
$1 / 2[\delta(s+\omega)+\delta(s-\omega)]$
$1 / 2[\delta(s+\omega)-\delta(s-\omega)] i$


## Constant Functions

Spatial Domain
$f(t)$

1
$a$


## Delta (Impulse) Function



## Square Pulse

Spatial Domain
$f(t)$
$\Pi_{a}(t)$


Spatial Domain

Frequency Domain

$$
F(s)
$$

$2 a \operatorname{sinc}(2 a s)=\frac{\sin (2 \pi a s)}{\pi s}$


Frequency Domain

## Sinc Function

- The Fourier transform of a square function, $\Pi_{a}(t)$ is the (normalized) sinc function:

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

- To show this, we substitute the value of $\prod_{a}(t)=1$ for $-\mathrm{a}<t<\mathrm{a}$ into the equation for the continuous FT, i.e.

$$
F(s)=\int_{-a}^{a} e^{-i 2 \pi s t} d t
$$

- We use a substitution. Let $u=-i 2 \pi s t, d u=-i 2 \pi s d t$ and then $d t=d u /-i 2 \pi s t$

$$
\begin{aligned}
& F(s)=\frac{1}{-i 2 \pi s} \int_{i 2 \pi s a}^{-i 2 \pi s a} e^{u} d u=\frac{1}{-i 2 \pi s}\left[e^{-i 2 \pi a s}-e^{i 2 \pi a s}\right]= \\
& \frac{1}{-i 2 \pi s}[\cos (-2 \pi a s)+i \sin (-2 \pi a s)-\cos (2 \pi a s)-i \sin (2 \pi a s)]= \\
& \frac{1}{-i 2 \pi s}[-2 i \sin (2 \pi a s)]=\frac{1}{\pi s} \sin (2 \pi a s)=2 a \operatorname{sinc}(2 a s) .
\end{aligned}
$$

## Triangle

Spatial Domain $f(t)$
$\Lambda_{a}(t)$

$a \operatorname{sinc}^{2}(a s)$
Frequency Domain
$F(s)$
$1 / 2 \operatorname{sinc}^{2}(s / 2)$


## Comb (Shah) Function



## Gaussian

Spatial Domain
$f(t)$

$$
\begin{array}{ll}
e^{-\pi t^{2}} & e^{-\pi s^{2}} \\
e^{-\pi\left(\frac{t}{\sigma}\right)^{2}} & e^{-\pi(\sigma s)^{2}}
\end{array}
$$

Frequency Domain

$$
F(s)
$$

see homework assignment!

## Graphical Picture

$$
e^{-\pi\left(\frac{t}{\sigma}\right)^{2}}
$$




## Common Fourier Transform Pairs

| Spatial Domain: $f(t)$ |  | Frequency Domain: $F(s)$ |  |
| :---: | :---: | :---: | :---: |
| Cosine | $\cos (2 \pi \omega t)$ | Shifted Deltas | $1 / 2[\delta(s+\omega)+\delta(s-\omega)]$ |
| Sine | $\sin (2 \pi \omega t)$ | Shifted Deltas | $1 / 2[\delta(s+\omega)-\delta(s-\omega)] i$ |
| Unit Function | 1 | Delta Function | $\delta(s)$ |
| Constant | $a$ | Delta Function | $a \delta(s)$ |
| Delta Function | $\delta(t)$ | Unit Function | 1 |
| Comb | $\delta(t \bmod h)$ | Comb | $\delta(t \bmod 1 / h)$ |
| Square Pulse | $\Pi_{a}(t)$ | Sinc Function | $2 a \operatorname{sinc}(2 a s)$ |
| Triangle | $\Lambda_{a}(t)$ | Sinc Squared | $a \operatorname{sinc}^{2}(a s)$ |
| Gaussian | $e^{-\pi t^{2}}$ | Gaussian | $e^{-\pi s^{2}}$ |

## FT Properties: Addition Theorem

Adding two functions together adds their Fourier Transforms:

$$
\mathcal{F}(f+g)=\mathscr{F}(f)+\mathscr{F}(g)
$$

Multiplying a function by a scalar constant multiplies its Fourier Transform by the same constant:

$$
\mathcal{F}(a f)=a \mathcal{F}(f)
$$

Consequence: Fourier Transform is a linear transformation!

## FT Properties: Shift Theorem

Translating (shifting) a function leaves the magnitude unchanged and adds a constant to the phase

If

$$
\begin{aligned}
f_{2}(t) & =f_{1}(t-a) \\
F_{1} & =\mathcal{F}\left(f_{1}\right) \\
F_{2} & =\mathcal{F}\left(f_{2}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
\left|F_{2}\right| & =\left|F_{1}\right| \\
\phi\left(F_{2}\right) & =\phi\left(F_{1}\right)-2 \pi s a
\end{aligned}
$$

Intuition: magnitude tells you "how much", phase tells you "where"

## FT Properties: Similarity Theorem

Scaling a function's abscissa (domain or horizontal axis) inversely scales the both magnitude and abscissa of the Fourier transform.

If

$$
\begin{aligned}
f_{2}(t) & =f_{1}(a t) \\
F_{1} & =\mathscr{F}\left(f_{1}\right) \\
F_{2} & =\mathscr{F}\left(f_{2}\right)
\end{aligned}
$$

then

$$
F_{2}(s)=(1 /|a|) F_{1}(s / a)
$$

## FT Properties: Rayleigh's Theorem

Total sum of squares is the same in either domain:

$$
\int_{-\infty}^{\infty}|f(t)|^{2} d t=\int_{-\infty}^{\infty}|F(s)|^{2} d s
$$

## The Fourier Convolution Theorem

Let $F, G$, and $H$ denote the Fourier Transforms of signals $f, g$, and $h$ respectively

$$
\begin{array}{lll}
g=f * h & \text { implies } & G=F H \\
g=f h & \text { implies } & G=F * H
\end{array}
$$

Convolution in one domain is multiplication in the other and vice versa

## Convolution in the Frequency Domain

One application of the Convolution Theorem is that we can perform time-domain convolution using frequency domain multiplication:

$$
f * g=F^{-1}(\mathscr{F}(f) \mathscr{F}(g))
$$

How does the computational complexity of doing convolution compare to the forward and inverse Fourier transform?

## Deconvolution

If $G=F H$, can't you reverse the process by $F=G / H$ ?

This is called deconvolution: the "undoing" of convolution

Problem: most systems have noise, which limits deconvolution, especially when H is small.

## 2-D Continuous Fourier Transform

Basic functions are sinusoids with frequency $u$ in one direction times sinusoids with frequency $v$ in the other:

$$
F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i 2 \pi(u x+v y)} d x d y
$$

Same process for the inverse transform:

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{i 2 \pi(u x+v y)} d x d y
$$

## 2-D Discrete Fourier Transform

For an $N \times M$ image, the basis functions are:

$$
\begin{gathered}
h_{u, v}[x, y]=e^{i 2 \pi u x / N} e^{i 2 \pi v y / M} \\
=e^{-i 2 \pi(u x / N+v y / M)} \\
F[u, v]=\frac{1}{N M} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f[x, y] e^{-i 2 \pi(u x / N+v y / M)}
\end{gathered}
$$

Same process for the inverse transform:

$$
f[x, y]=\sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F[u, v] e^{i 2 \pi(u x / N+v y / M)}
$$

## 2D and 3D Fourier Transforms

The point $(u, v)$ in the frequency domain corresponds to the basis function with:


This follows from rotational invariance

## Properties

All other properties of 1D FTs apply to 2D and 3D:

- Linearity
- Shift
- Scaling
- Rayleigh's Theorem
- Convolution Theorem


## Rotation

Rotating a 2D function rotates it's Fourier Transform
If

$$
\begin{aligned}
f_{2} & =\operatorname{rotate}_{\theta}\left(f_{1}\right) \\
& =f_{1}(x \cos (\theta)-y \sin (\theta), x \sin (\theta)+y \cos (\theta)) \\
F_{1} & =F\left(f_{1}\right) \\
F_{2} & =F\left(f_{2}\right)
\end{aligned}
$$

then

$$
F_{2}(s)=F_{1}(x \cos (\theta)-y \sin (\theta), x \sin (\theta)+y \cos (\theta))
$$

i.e., the Fourier Transform is rotationally invariant.

## Rotation Invariance (sort of)


needs more boundary padding!

## Transforms of Separable Functions

If

$$
f(x, y)=f_{1}(x) f_{2}(y)
$$

the function $f$ is separable and its Fourier Transform is also separable:

$$
F(u, v)=F_{1}(u) F_{2}(v)
$$

## Linear Separability of the 2D FT

The 2D Fourier Transform is linearly separable: the Fourier Transform of a two-dimensional image is the 1D Fourier Transform of the rows followed by the 1D Fourier Transforms of the resulting columns (or vice versa)

$$
\begin{aligned}
F[u, v]= & \frac{1}{N M} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f[x, y] e^{-i 2 \pi(u x / N+v y / M)} \\
& =\frac{1}{N M} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f[x, y] e^{-i 2 \pi u x / N} e^{-i 2 \pi v y / M} \\
& \frac{1}{M} \sum_{y=0}^{M-1}\left[\frac{1}{N} \sum_{x=0}^{N-1} f[x, y] e^{-i 2 \pi u x / N}\right] e^{-i 2 \pi v y / M}
\end{aligned}
$$

Likewise for higher dimensions!

## Convolution using FFT

Convolution theorem says

$$
f^{*} g=F^{-1}(\mathcal{F}(f) \mathscr{F}(g))
$$

Can do either:

- Direct Space Convolution
- FFT, multiplication, and inverse FFT

Computational breakeven point: about $9 \times 9$ kernel in 2D

## Correlation

Convolution is

$$
f(t) * g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

Correlation is

$$
f(t)^{*} g(-t)=\int_{-\infty}^{\infty} f(\tau) g(t+\tau) d \tau
$$

## Correlation in the Frequency Domain

Convolution

$$
f(t) * g(t) \leftrightarrow F(s) G(s)
$$

Correlation

$$
f(t) * g(-t) \leftrightarrow F(s) G^{*}(s)
$$

## Template "Convolution"

- Actually, is a correlation method
- Goal: maximize correlation between target and probe image -Here: only translations allowed but rotations also possible



## Particle Picking

-Use spherical, or rotationally averaged probes
-Goal: maximize correlation between target and probe image
microscope image of latex spheres


## Autocorrelation

Autocorrelation is the correlation of a function with itself:

$$
f(t) * f(-t)
$$

Useful to detect self-similarities or repetitions / symmetry within one image!

## Power Spectrum

The power spectrum of a signal is the Fourier Transform of its autocorrelation function:

$$
\begin{aligned}
P(s) & =F(f(t) * f(-t)) \\
& =F(s) F^{*}(s) \\
& =|F(s)|^{2}
\end{aligned}
$$

It is also the squared magnitude of the Fourier transform of the function

It is entirely real (no imaginary part).
Useful for detecting periodic patterns / texture in the image.

## Use of Power Spectrum in Image Filtering



Original with noise patterns


Mask to remove periodic noise


Power spectrum showing noise spikes


Inverse FT with periodic noise removed

## Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in agreement with the listed copyright statements:
http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon, 97331

## Resources

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapters 9,10 John C. Russ, The Image Processing Handbook, Chapter 5

