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Complex Numbers: Review
A complex number is one of the 

form:

a + bi

where

a: real part

b: imaginary part

1i = −



Complex Arithmetic
When you add two complex numbers, the real and 
imaginary parts add independently:

(a + bi) + (c + di) = (a + c) + (b + d)i

When you multiply two complex numbers, you cross-
multiply them like you would polynomials:

(a + bi) × (c + di) = ac + a(di) + (bi)c + (bi)(di)

= ac + (ad + bc)i + (bd)(i2)

= ac + (ad + bc)i - bd

= (ac - bd) + (ad + bc)i



Polynomial Multiplication

p1(x) = 3 x2 + 2 x + 4

p2(x) = 2 x2 + 5 x + 1

p1(x) p2(x) = ____x4 + ____x3 + ____x2 + ____x + ____



The Complex Plane
Complex numbers can be thought of as vectors in the complex plane 
with basis vectors (1, 0) and (0, i):
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Magnitude and Phase
The length of a complex number is its magnitude:

The angle from the real-number axis is its phase:

φ (a + bi) = tan-1(b / a)

When you multiply two complex numbers, their magnitudes 
multiply

|z1z2| = |z1||z2|

And their phases add

φ (z1z2) = φ (z1) + φ (z2)

2 2a bi a b+ = +



The Complex Plane: Magnitude and Phase
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Complex Conjugates
If z = a + bi is a complex number, then its complex conjugate is:

z* = a - bi

The complex conjugate z* has the same magnitude but opposite phase

When you add z to z*, the imaginary parts cancel and you get a real number:

(a + bi) + (a - bi) = 2a

When you multiply z to z*, you get the real number equal to |z|2:

(a + bi)(a - bi) = a2 – (bi)2 = a2 + b2



Complex Division
If z1 = a + bi, z2 = c + di, z = z1 / z2, 

the division can be accomplished by multiplying the numerator and 
denominator by the complex conjugate of the denominator:

2 2 2 2

( )( )
( )( )
a bi c di ac bd bc adz i
c di c di c d c d

+ − + −⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟+ − + +⎝ ⎠ ⎝ ⎠



Euler’s Formula

• Remember that under complex multiplication:
Magnitudes multiply
Phases add

• Under what other quantity/operation does multiplication result in an addition?
Exponentiation:  cacb = ca + b (for some constant c)

• If we have two numbers of the form m·ca (where c is some constant), then 
multiplying we get:

(m·ca ) (n·cb) = m·n·ca + b

• What constant c can represent complex numbers?



Euler’s Formula
• Any complex number can be represented using Euler’s formula:

z = |z|eiφ (z) = |z|cos(φ ) + |z|sin(φ )i = a + bi

Real

Imaginary
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φ

a = |z|cos(φ )
b = |z|sin(φ )



Powers of Complex Numbers
Suppose that we take a complex number

z = |z|ei φ (z)

and raise it to some power

zn = [|z|ei φ (z)]n

= |z|n ei n φ (z)

zn has magnitude |z|n and phase n φ (z)
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Powers of Complex Numbers: Example
• What is in for various n?

, 4n = 0

, 5n = 1

n = 2, 6 , 8

n = 3, 7



Real

Imaginary
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Powers of Complex Numbers: Example
• What is (eiπ/4)n for various n?

, 8n = 0

, 9

n = 2

n = 4

n = 6

n = 1n = 3

n = 5
n = 7



Real

Imaginary
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Harmonic Functions
• What does x(t) = eiωt look like?

• x(t) is a harmonic function (a building block for later analysis)

eiωt

Angular frequency

Time



Harmonic Functions as Sinusoids

sin(ωt)cos(ωt)

ℑ(eiωt)ℜ(eiωt)

Imaginary PartReal Part



Questions: Complex Numbers



Convolution
Convolution of an input x(t) with the impulse response h(t) is 
written as

x(t) * h(t)

That is to say,

ττ)(τ dthxthtx ∫
∞

∞−

−=∗ )()()(



Convolution of Discrete Functions
For a discrete function x[j] and impulse response h[j]:

∑ −⋅=∗
k

kjhkxjhjx ][][][][



One Way to Think of Convolution

Think of it this way:

Shift a copy of h to each position t (or discrete position k)

Multiply by the value at that position x(t) (or discrete sample 
x[k])

Add shifted, multiplied copies for all t (or discrete k)

∑ −⋅=∗
k

kjhkxjhjx ][][][][

ττ)(τ dthxthtx ∫
∞

∞−

−=∗ )()()(



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0] = [ __ __ __ __ __ __ __ __ __ ]
x[1] h[j – 1] = [ __ __ __ __ __ __ __ __ __ ]
x[2] h[j – 2] = [ __ __ __ __ __ __ __ __ __ ]
x[3] h[j – 3] = [ __ __ __ __ __ __ __ __ __ ]
x[4] h[j – 4] = [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]

Σ
k



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0] = [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1] = [ __ __ __ __ __ __ __ __ __ ]
x[2] h[j – 2] = [ __ __ __ __ __ __ __ __ __ ]
x[3] h[j – 3] = [ __ __ __ __ __ __ __ __ __ ]
x[4] h[j – 4] = [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]

Σ
k



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0] = [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1] = [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2] = [ __ __ __ __ __ __ __ __ __ ]
x[3] h[j – 3] = [ __ __ __ __ __ __ __ __ __ ]
x[4] h[j – 4] = [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]

Σ
k



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0] = [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1] = [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2] = [ __ __ 3 6 9 12 15 __ __ ]
x[3] h[j – 3] = [ __ __ __ __ __ __ __ __ __ ]
x[4] h[j – 4] = [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]

Σ
k



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0] = [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1] = [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2] = [ __ __ 3 6 9 12 15 __ __ ]
x[3] h[j – 3] = [ __ __ __ 1 2 3 4 5 __ ]
x[4] h[j – 4] = [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]

Σ
k



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0] = [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1] = [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2] = [ __ __ 3 6 9 12 15 __ __ ]
x[3] h[j – 3] = [ __ __ __ 1 2 3 4 5 __ ]
x[4] h[j – 4] = [ __ __ __ __ 2 4 6 8 10 ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]

Σ
k



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0] = [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1] = [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2] = [ __ __ 3 6 9 12 15 __ __ ]
x[3] h[j – 3] = [ __ __ __ 1 2 3 4 5 __ ]
x[4] h[j – 4] = [ __ __ __ __ 2 4 6 8 10 ]

x[j] * h[j] = x[k] h[j – k]

= [ 1 6 14 23 34 39 25 13 10 ]

Σ
k



Another Way to Look at Convolution

Think of it this way:

Flip the function h around zero

Shift a copy to output position j

Point-wise multiply for each position k the value of the 
function x and the flipped and shifted copy of h

Add for all k and write that value at position j

∑ −⋅=∗
k

kjhkxjhjx ][][][][



Convolution in Higher Dimensions
In one dimension:

In two dimensions:

Or, in discrete form:

ττ)(τ dthxthtx ∫
∞

∞−

−=∗ )()()(

∫ ∫
∞

∞−

∞

∞−

−−=∗ yxyxyx ddyxhIyxhyxI τττ,ττ,τ )()(),(),(

∑∑ −−=∗
k j

kyjxhkjIyxhyxI ],[],[],[],[



Example: Two-Dimensional Convolution

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2

1 1 1
* 1 2 1 =

1 1 1

see homework assignment!



Properties of Convolution
• Commutative: f * g = g * f

• Associative: f * (g * h) = (f * g) * h

• Distributive over addition: f * (g + h) = f * g + f * h

• Derivative:

Convolution has the same mathematical properties as 
multiplication
(This is no coincidence)

( )d f g f g f g
dt

′ ′∗ = ∗ + ∗



Useful Functions
• Square: Πa(t)

• Triangle: Λa(t)

• Gaussian: G(t, s)

• Step: u(t)

• Impulse/Delta: δ (t)

• Comb (Shah Function): combh(t)

Each has their two- or three-dimensional equivalent.



Square

What does f(t) * Πa(t) do to a signal f(t)?

What is Πa(t) * Πa(t)? 

-a a

11    if 
( )

0   otherwisea

t a
t

⎧ ≤⎪Π = ⎨
⎪⎩



Triangle

-a a

1
1     if 

( )
0              otherwise

a

t t aat
⎧ − ≤⎪Λ = ⎨
⎪⎩



Gaussian
Gaussian: maximum value = 1

Normalized Gaussian: area = 1

Convolving a Gaussian with another:

-σ σ

1

-σ σ

1

2
22( , )

t
G t e σσ
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2
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Step Function

What is the derivative of a step function?

1

⎩
⎨
⎧ ≥

=
otherwise   0

0 if    1
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t
tu



Impulse/Delta Function
• We’ve seen the delta function before:

• Shifted Delta function: impulse at t = k

• What is a function f(t) convolved with δ (t)?

• What is a function f(t) convolved with δ (t - k)?

0

k0

∫
∞

∞−

=
⎩
⎨
⎧ =∞

= 1)(    and    
otherwise     0

0 if    
)( dtt

t
t δδ
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Comb (Shah) Function
A set of equally-spaced impulses: also called an impulse train

h is the spacing

What is f(t) * combh(t)?

-2h h-h 2h 3h0-3h

∑ −=
k

h hkttcomb )()( δ



Convolution Filtering
• Convolution is useful for modeling the behavior of filters

• It is also useful to do ourselves to produce a desired effect

• When we do it ourselves, we get to choose the function that the 
input will be convolved with

• This function that is convolved with the input is called the 
convolution kernel



Convolution Filtering: Averaging
Can use a square function (“box filter”) or Gaussian to locally 
average the signal/image

Square (box) function: uniform averaging
Gaussian: center-weighted averaging

Both of these blur the signal or image



Questions: Convolution



Frequency Analysis

© http://www.cs.sfu.ca/~hamarneh/courses/cmpt340_04_1© http://www.physics.gatech.edu/gcuo/UltrafastOptics/PhysicalOptics/

Here, we write a square 
wave as a sum of sine 
waves:



Frequency Analysis
• To use transfer functions, we must first decompose a signal into its component 

frequencies

• Basic idea: any signal can be written as the sum of phase-shifted sines and 
cosines of different frequencies

• The mathematical tool for doing this is the Fourier Transform

© www.dai.ed.ac.uk/HIPR2/ fourier.htm

image wave magnitudes                   wave phases



General Idea of Transforms
Given an orthonormal (orthogonal, unit length) basis set of vectors 
{ēk}:

Any vector in the space spanned by this basis set can be 
represented as a weighted sum of those basis vectors:

To get a vector’s weight relative to a particular basis vector ēk:

Thus, the vector can be transformed into the weights ak

Likewise, the transformation can be inverted by turning the 
weights back into the vector

∑=
k

kkeav

kk eva ⋅=



Linear Algebra with Functions
The inner (dot) product of two vectors is the sum of the point-
wise multiplication of each component:

Can’t we do the same thing with functions?

Functions satisfy all of the linear algebraic requirements of 
vectors

∑ ⋅=⋅
j

jvjuvu ][][

*( ) ( )f g f x g x dx
∞

−∞

⋅ = ∫



Transforms with Functions
Just as we transformed vectors, we can also transform functions:

Inverse

Transform

Functions {ek(t)}Vectors {ēk[j]}

∑ ⋅=⋅=
j

kkk jejveva ][][

∑=
k

kkeav

*( ) ( )k k ka f e f t e t dt
∞

−∞

= ⋅ = ∫

)()( teatf
k

kk∑=



Basis Set: Generalized Harmonics
The set of generalized harmonics we discussed earlier form an 
orthonormal basis set for functions:

{ei2πst}

where each harmonic has a different frequency s

Remember:

ei2πst = cos(2πst) + i sin(2πst)

The real part is a cosine of frequency s
The imaginary part is a sine of frequency s



The Fourier Series

Inverse

Transform

Harmonics {ei2πst}All Functions {ek(t)}

*( ) ( )k k ka f e f t e t dt
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= ⋅ = ∫
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The Fourier Transform
Most tasks need an infinite number of basis functions 
(frequencies), each with their own weight F(s):

Inverse

Transform

Fourier TransformFourier Series

∫
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The Fourier Transform
To get the weights (amount of each frequency):F

To convert weights back into a signal (invert the transform):

F(s) is the Fourier Transform of f(t): F(f(t)) = F(s)

f(t) is the Inverse Fourier Transform of F(s): F-1(F(s)) = f(t)

∫
∞

∞−

−= dtetfsF sti π2)()(

∫
∞

∞−

= dsesFtf sti π2)()(



Notation
Let F denote the Fourier Transform:

F = F(f )

Let F-1 denote the Inverse Fourier Transform:

f = F-1(F )



How to Interpret the Weights F(s)
The weights F(s) are complex numbers:

How much of a sinusoid of frequency s you need

What phase that sinusoid needs to be

Magnitude

Phase

How much of a cosine of frequency s you need

How much of a sine of frequency s you need

Real part

Imaginary part



Magnitude and Phase
Remember: complex numbers can be thought of in two 
ways: (real, imaginary) or (magnitude, phase)

Magnitude:

Phase:

22 )()( FFF ℑ+ℜ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ℑ
ℜ

=
)(
)(arctan)(

F
FFφ

© www.dai.ed.ac.uk/HIPR2/ fourier.htm

image |F| ɸ (F)



Periodic Objects on a Grid: Crystals
• Periodic objects with period N:

Underlying frequencies must also repeat over the period N
Each component frequency must be a multiple of the 
frequency of the periodic object itself:

• If the signal is discrete:
Highest frequency is one unit: period repeats after a single sample

No more than N components

  ,3  ,2  ,1
NNN

N
N

NNN
    ,3  ,2  ,1



Discrete Fourier Transform (DFT)
If we treat a discrete signal with N samples as one period of an 
infinite periodic signal, then

and

Note: For a periodic function, the discrete Fourier transform is the same as 
the continuous transform

We give up nothing in going from a continuous to a discrete 
transform as long as the function is periodic
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Normalizing DFTs: Conventions
InverseTransformBasis 

Function
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Discrete Fourier Transform (DFT)

Questions:
What would the code for the discrete Fourier transform look 
like?
What would its computational complexity be?
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Fast Fourier Transform

If we let

the Discrete Fourier Transform can be written

If N is a multiple of 2, N = 2M for some positive integer M, 
substituting 2M for N gives

N
i

N eW
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developed by Tukey and Cooley in 1965



Fast Fourier Transform
Separating out the M even and M odd terms,

Notice that

and

So,
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Fast Fourier Transform

Can be written as

We can use this for the first M terms of the Fourier transform of 
2M items, then we can re-use these values to compute the last M
terms as follows:
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Fast Fourier Transform
If M is itself a multiple of 2, do it again!

If N is a power of 2, recursively subdivide until you have one 
element, which is its own Fourier Transform

ComplexSignal FFT(ComplexSignal f) {
if (length(f) == 1) return f;

M = length(f) / 2;
W_2M = e^(-I * 2 * Pi / M)  // A complex value.

even = FFT(EvenTerms(f));
odd  = FFT( OddTerms(f));

for (s = 0; s < M; s++) {
result[s  ] = even[s] + W_2M^s * odd[s];
result[s+M] = even[s] – W_2M^s * odd[s];

}
}



Fast Fourier Transform
Computational Complexity:

Remember: The FFT is just a faster algorithm for computing the DFT — it 
does not produce a different result

O(N log N)Fast Fourier Transform

O(N2)Discrete Fourier Transform



Fourier Pairs
Use the Fourier Transform, denoted F, to get the weights for 
each harmonic component in a signal:

And use the Inverse Fourier Transform, denoted F–1, to 
recombine the weighted harmonics into the original signal:

We write a signal and its transform as a Fourier Transform pair:

∫
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−== dtetftfsF sti π2)())(()( F
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Sinusoids

½[δ(s + ω) + δ(s – ω)]

½[δ(s + ω) - δ(s – ω)]i

cos(2πωt)

sin(2πωt)

Frequency Domain
F(s)

Spatial Domain
f(t)



Constant Functions

δ (s)

a δ (s)

1

a

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Delta (Impulse) Function

1δ (t)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Square Pulse

Πa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

sin(2 )2  sinc(2 ) asa as
s
π

π
=

Adapted from http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html



Sinc Function 
• The Fourier transform of a square function, Πa(t) is the (normalized) sinc

function:

• To show this, we substitute the value of Πa(t) = 1 for – a < t < a into the 
equation for the continuous FT, i.e.

• We use a substitution. Let u = -i2πst, du = -i2πs dt and then dt = du / -i2πst

[ ]
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2 2

2

1 1( )
2 2

1 cos( 2 ) sin( 2 ) cos(2 ) sin(2 )
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1 1[ 2 sin(2 )] sin(2 ) 2  sinc(2 ).
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Triangle

a sinc2(as)Λa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

t0

1/ 2 ( )t∆
1

1/2-1/2 s0

21/2 sinc ( / 2)s
0.5



Comb (Shah) Function

δ (t mod 1/h)combh(t) = δ (t mod h)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Gaussian

Frequency Domain
F(s)

Spatial Domain
f(t)

2se π−2te π−

( )2se π σ−
2t

e
π

σ
⎛ ⎞− ⎜ ⎟
⎝ ⎠

see homework assignment!



Graphical Picture

http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html
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Common Fourier Transform Pairs

2a sinc(2as)Sinc FunctionΠa(t)Square Pulse

a sinc2(as)Sinc SquaredΛa(t)Triangle

GaussianGaussian

1Unit Functionδ (t)Delta Function

δ (t mod 1/h)Combδ (t mod h)Comb

Delta Function

Delta Function

Shifted Deltas

Shifted Deltas

Constant

Unit Function

Sine

Cosine ½[δ (s + ω) + δ (s – ω)]cos(2πωt)

½[δ (s + ω) - δ (s – ω)]isin(2πωt)

δ (s)1

a δ (s)a

Frequency Domain: F(s)Spatial Domain: f(t)

2se π−2te π−



FT Properties: Addition Theorem
Adding two functions together adds their Fourier Transforms:

F(f + g) = F(f) + F(g) 

Multiplying a function by a scalar constant multiplies its Fourier 
Transform by the same constant:

F(a f) = aF(f)

Consequence: Fourier Transform is a linear transformation!



FT Properties: Shift Theorem
Translating (shifting) a function leaves the magnitude unchanged 
and adds a constant to the phase

If f2(t) = f1(t – a)

F1 = F(f1) 
F2 = F(f2) 

then
|F2| = |F1|

φ (F2) = φ (F1) - 2πsa

Intuition: magnitude tells you “how much”,
phase tells you “where”



FT Properties: Similarity Theorem
Scaling a function’s abscissa (domain or horizontal axis) inversely 
scales the both magnitude and abscissa of the Fourier transform.

If f2(t) = f1(a t)

F1 = F(f1) 
F2 = F(f2) 

then
F2(s) = (1/|a|) F1(s / a)



FT Properties: Rayleigh’s Theorem

Total sum of squares is the same in either domain:

∫∫
∞

∞−

∞

∞−

= dssFdttf 22 )()(



The Fourier Convolution Theorem
Let F, G, and H denote the Fourier Transforms of signals f, g, 
and h respectively

g = f * h implies G = F H

g = f h implies G = F * H

Convolution in one domain is multiplication in the other and vice 
versa



Convolution in the Frequency Domain
One application of the Convolution Theorem is that we can 
perform time-domain convolution using frequency domain 
multiplication:

f * g = F–1(F(f ) F(g))

How does the computational complexity of doing convolution 
compare to the forward and inverse Fourier transform?



Deconvolution
If G = FH, can’t you reverse the process by F = G / H?

This is called deconvolution: the “undoing” of convolution

Problem: most systems have noise, which limits deconvolution, 
especially when H is small.



2-D Continuous Fourier Transform
Basic functions are sinusoids with frequency u in one direction 
times sinusoids with frequency v in the other:

Same process for the inverse transform:

∫ ∫
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∞

∞−
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2-D Discrete Fourier Transform
For an N × M image, the basis functions are:

Same process for the inverse transform:
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2D and 3D Fourier Transforms
The point (u, v) in the frequency domain corresponds to the basis 
function with:

Frequency u in x Frequency |(u, v)|

and OR in the

Frequency v in y Direction φ (u, v)

This follows from rotational invariance



Properties
All other properties of 1D FTs apply to 2D and 3D:

Linearity
Shift
Scaling
Rayleigh’s Theorem
Convolution Theorem



Rotation
Rotating a 2D function rotates it’s Fourier Transform

If
f2 = rotateθ(f1)

= f1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

F1 = F(f1) 

F2 = F(f2)

then
F2(s) = F1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

i.e., the Fourier Transform is rotationally invariant.



Rotation Invariance (sort of)

© http://mail.udlap.mx/~oldwall/docencia/IMAGENES/chapter2/image_232_IS548.html

needs
more
boundary
padding!



Transforms of Separable Functions
If

f(x, y) = f1(x) f2(y)

the function f is separable and its Fourier Transform is also 
separable:

F(u,v) = F1(u) F2(v)



Linear Separability of the 2D FT
The 2D Fourier Transform is linearly separable: the Fourier Transform 
of a two-dimensional image is the 1D Fourier Transform of the rows followed by 
the 1D Fourier Transforms of the resulting columns (or vice versa)
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Likewise for higher dimensions!



Convolution using FFT
Convolution theorem says

f *g = F –1(F(f ) F(g))

Can do either:

Direct Space Convolution

FFT, multiplication, and inverse FFT

Computational breakeven point: about 9 × 9 kernel in 2D



Correlation
Convolution is

Correlation is

∫
∞

∞−

−= τττ dtgftgtf )()()( * )(

∫
∞

∞−
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Correlation in the Frequency Domain
Convolution 

f (t) * g(t) ↔ F(s) G(s) 

Correlation 

f (t) * g(-t) ↔ F(s) G*(s) 



Template “Convolution”

•Actually, is a correlation method
•Goal: maximize correlation between target and probe image
•Here: only translations allowed but rotations also possible

target         probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Particle Picking

•Use spherical, or rotationally averaged probes
•Goal: maximize correlation between target and probe image

target            probe

microscope image of latex spheres

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Autocorrelation
Autocorrelation is the correlation of a function with itself:

f (t) * f(-t)

Useful to detect self-similarities or repetitions / symmetry within 
one image!



Power Spectrum
The power spectrum of a signal is the Fourier Transform of its 
autocorrelation function:

P(s) = F(f (t) * f (-t))

= F(s) F*(s)

= |F(s)|2

It is also the squared magnitude of the Fourier transform of the
function

It is entirely real (no imaginary part).

Useful for detecting periodic patterns / texture in the image.



Use of Power Spectrum in Image Filtering

Original with noise patterns            Power spectrum showing noise spikes

Mask to remove periodic noise       Inverse FT with periodic noise removed
© http://www.reindeergraphics.com/tutorial/chap4/fourier13.html



Figure and Text Credits 

Text and figures for this lecture were adapted in part from the following source, in 
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon,  97331



Resources 

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapters 9,10
John C. Russ, The Image Processing Handbook, Chapter 5


