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U f F EUses of Free Energy

i f h i h d iFree energy is one of the most important thermodynamic 
quantities (reaction equilibrium, solvation, stability, and 
kinetics).)

• Protein-protein and protein-ligand interactions (binding constants, 
association and disassociation)

• Mutation analysis

• Rational drug design

• Protein folding/unfolding



Difficulty (I)y ( )
Thermodynamic properties:

• Mechanical properties: related to the derivative of the partition 
function Q

Internal energy pressure and heat capacity etcInternal energy, pressure, and heat capacity, etc.

• Thermal properties: related to the partition function Q itself

Free energy, chemical potential, and entropy, etc.

Partition function for the canonical ensemble:
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Difficulty (II)

Internal energy E: 
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Hi h h l b bili d k i i ifiHigh energy states have a very low probability and make an insignificant 
contribution to the integral, so we can get an accurate estimate of E by MD or 
MC.

Helmholtz free energy F:
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High energy states make a significant contribution to the integral, so the 
results for F will be poorly converged (inaccurate) in MD or MCresults for F will be poorly converged (inaccurate) in MD or MC.



Methods and Applications

• Free energy perturbation and thermodynamic integration
• Potential of mean force calculations
• ‘Rapid’ free energy methods

Most of the free-energy methods are based on calculation of free-energy 
differences, which may be the quantity of interest anyway. If reference is 
simple (such as ideal gas or harmonic crystal) its absolute free energy cansimple (such as ideal gas or harmonic crystal), its absolute free energy can 
be evaluated analytically.



Free Energy Perturbation 
and Thermodynamic 

Integrationg



Free-Energy Perturbation
• FEP gives free-energy difference between two states

– labeled 0, 1
• Working equation β=1/kBTΓ=(pN rN)• Working equation
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Free-Energy Perturbation
• FEP gives free-energy difference between two states

– labeled 0, 1
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1
1 0( ) 1

H
F F

H

d eQe
β

β
β

−
− − Γ

= = ∫
∫ 0

1 0 0

0

( )

H

H H H

H

e
Q d e

d e e

β

β β

β

−

− −−

Γ

Γ
=

∫
∫

∫
Add and subtract 

f t t

1 0

0

( )
0 )H H

Hd e

d e

β

β ρ− −

−Γ

= Γ (Γ∫
∫

1

reference-state energy

1 0( )
0

H He β −−=
1Γ

0

© D.A. Kofke



Free-Energy Perturbation
• FEP gives free-energy difference between two states

– labeled 0, 1
• Working equation• Working equation
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Free-Energy Perturbation
• FEP gives free-energy difference between two states

– labeled 0, 1
• Working equation• Working equation
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• Sample the region important to 0 state, measure properties of 1 state



Free-Energy Perturbation
• The FEP formula may be used also with the roles of the 

reference and target state reversed

1 0 1 0( ) ( )F F H He eβ β− − − −= 1 0 1 0( ) ( )F F H He eβ β+ − + −=

Original: 0 → 1 (insertion) Modified: 1 → 0 (deletion)

– sample the 1 state, evaluate properties of 0 state
0 1

0

1

Γ0
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General Numerical Problems

• Sampling problems limit range of FEP calculations
• Target state configurations must be encountered when g g

sampling reference state
• Two types of problem arise

target-state space very small target state outside of reference

1
1

Γ
0

Γ
0
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Staging Methods
• Multistage FEP can be used to remedy the sampling problem• Multistage FEP can be used to remedy the sampling problem

– define a potential Hw intermediate between 0 and 1 states
– evaluate total free-energy difference as 1 0 1 0( ) ( )w wF F F F F F− = − + −

• Each stage may be sampled in 
either direction

yielding four staging schemes

0 1 Umbrella sampling
0 1 Bennett's method

W
W

← →
→ ←

– yielding four staging schemes
– choose to avoid deletion calculation

0 1 Staged deletion
0 1 Staged insertion

W
W

← ←
→ →

Use staged insertion Use umbrella sampling

1

Use Bennett’s method

1
W

1

W

W

Γ
0

W

Γ
0

Γ
0

© D.A. Kofke



Multiple Stagesp g
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Multistage insertion Multistage umbrella sampling Multistage Bennett’s method
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Thermodynamic Integration & Slow Growth
• Thermodynamic Integration
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• Slow Growth Method

F is a continuous function of λ

From FEP expression:
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Relationship between TI and FEP
If the free energy is expressed as a Taylor series expansion in terms of λ at λ=0:
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Truncating this series after the first derivative and integrating providesTruncating this series after the first derivative and integrating provides 
the basis for the TI approach. If the Taylor series expansion is continued 
until it converges then is equivalent to the FEP formula. 

Jorgensen WL: Computation of Free Energy Changes in Solution. In Encyclopedia of Computational 

A review for FEP, TI, and SG:

g p gy g y p f p
Chemistry P. Edited by v.R. Schleyer. Wiley: New York; 1998, 2:1061-1070.



Application (I)
Thermodynamic cyclesThermodynamic cycles

L1 + R L1-R1F∆

L + R L R

4F∆3F∆

L2 + R L2-R
2F∆

• In principle, the relative binding affinity: 2 1F F F∆∆ = ∆ − ∆

They are actual association process, but it would be difficult for sampling 

• Free energy is a state function: 4 3F F F∆∆ = ∆ − ∆

They are non physical processes but quite feasible in the computerThey are non-physical processes, but quite feasible in the computer 

We can perform two simulations: ‘mutant’ L1 into L2 in solution and L1 to 
L2 within the receptor.

2 1( ) (1 )H H Hλ λ λ= + −



Application (II)
Partitioning the free energyPartitioning the free energy

Which interactions contribute to the most of the overall free energy?

In Thermodynamic Integration:
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In FEP, this can also be achieved by first perturbing the electrostatic and 
then the van-der-Waals parameters.p

Note: only the sum of the contributions is truly meaningful, the individual 
contributions are not state functions.

Boresch S, Karplus M: The meaning of component analysis: decomposition of the free energy in terms of 
specific interactions. J Mol Biol 1995, 254:801-807.



Potential of Mean ForcePotential of Mean Force 
Calculations

(Boltzmann Inversion)



Potential of Mean Force (PMF)

M
F

R i C di

PM

Reaction Coordinates

W id tif h th i bi l i l t t k l l• We can identify or hypothesize one biological process to take place along 
some inter- or intra-molecular coordinates, called reaction coordinates (RC).

• PMF is basically the free energy profile along the reaction coordinates, and 
all the other degrees of freedom will be averaged out.



Potential of Mean Force (PMF)
A simple example, We select the distance between two atoms as RC, the PMF 
is the free energy change as the separation (r) between the atoms is changed. 
The distribution of r can be described by the radial distribution function g(r)The distribution of r can be described by the radial distribution function g(r), 
so:

( ) ln ( )BF r k T g r= −

For a general RC q: ( ) ln ( )BF q k T g q= −

For multi-dimension cases, (q,s) :

( ) ln ( )BF q s k T g q s= −( , ) ln ( , )BF q s k T g q s=

It is often difficult to find suitable RC for detailed biological processes.



Potential of Mean Force (PMF)
Example: membrane channel. There is a “natural” RCa p e: e b a e c a e . e e s a a u a C

Jensen MØ, Park S, Tajkhorshid E, Schulten K: Energetics of glycerol conduction through aquaglyceroporin 
GlpF. Proc Natl Acad Sci USA 2003, 99:6731-6736.



Potential of Mean Force (PMF)
The logarithmic relationship between the PMF and g(q) means that a small change in 
the free energy may correspond to g(q) changing by an order of magnitude or more 
from its most likely value. Standard MC or MD methods do not adequately sample 
regions where g(q) differs drastically from the most likely value leading to inaccurateregions where g(q) differs drastically from the most likely value, leading to inaccurate 
values for the PMF.

PM
F

Reaction Coordinates

We can calculate the PMF using the FEP method. But FEP is commonly used to study 
‘mutations’, which are often along non-physical pathways. We want to calculate PMF 
for a physically achievable process, so we can get the transition states and derive 
ki i i i h Th di i l id h likinetic quantities such as rate constants. The traditional way to avoid the sampling 
problem is Umbrella Sampling.



Umbrella Sampling
Umbrella sampling attempts to overcome the sampling problem by modifying 
the Hamiltonian so that the unfavorable states are sampled sufficiently. The 
modification can be written as a perturbationmodification can be written as a perturbation.

0 ( )H H U q= +

U(q) is a weighting function, often takes a quadratic form:

0 2( ) ( )U k 0 2( ) ( )U q k q q= −

For configurations that are far from the equilibrium state q0, the weighting 
function will be large and so the simulation will be biased along the relevant 
RC toward the region of q0. This technique is called “umbrella sampling”, 
since the resulting distributions are broader than the Boltzmann distribution. 



Umbrella Sampling
Umbrella distribution g’(q) is non-Boltzmann. The Boltzmann distribution 
can subsequently be recovered from the biased one [Torrie and Valleau 1977]. 

[ ]( ) '( )exp ( ) Bg q const g q U q k T= ×

Free energy:gy

( ) ln '( ) ( ) 'BF q k T g q U q F= − − +

The free energy shift F’ is not obvious and depends on U’(q)

Limitation: larger U(q) will bring numerical uncertainties, and the computed averages 
will be dominated by only a few terms. 



Umbrella Sampling
A succession of simulations using q1

0, q2
0, qi

0, …., can be devised to 
overcome this problem.

0
1q 0

2q 0
iq

PM
F

A limit is set for each sampling window

Reaction Coordinates

Problem: H t bi th lt f b ll li i diff t i d /

p g

Problem: How to recombine the results from umbrella sampling in different windows / 
simulations? Different simulations have different free energy offsets.



WHAM: Weighted Histogram Analysis Method
The WHAM equations express the optimal estimate for the unbiased 
distribution function as a q-dependent weighted sum over the Nw
sampling windows / simulations. 

( )( )
1 1

( ) ( ) exp ( )
w wN N

i j j j Bi
i j

q n q n U q F k Tρ ρ
= =

⎡ ⎤= − −⎣ ⎦∑ ∑

( )ln exp ( ) ( )j B j BF k T dq U q k T qρ⎡ ⎤= − −⎣ ⎦∫
• ni = number of counts in histogram bin of simulation i
• Uj, Fj = biasing potential and free energy shift in simulation j

Solve by iteration to self consistency for unknown Fj and <ρ(q)>y y j ρ(q)
Then F = - kB T ln <ρ(q)>

Kumar S, Bouzida D, Swendsen RH, Kollmann PA, Rosenberg JM: The weighted histogram 
analysis method for free-energy calculations on biomolecules. I. The method. J Comp Chem y gy p
1992, 13: 1011-1021.

Roux B: The calculation of the potential of mean force using computer simulations. Comp Phys 
Commu 1995, 91: 275-282.



Adaptive Umbrella Sampling
Instead of a quadratic form of umbrella potential:

0 2( ) ( )U q k q q= −

We can get it from PMF. A simulation with a potential:
0 ( )H H U q= +

Its probability density is proportional to:

[ ]0( ) ( )exp ( ) Bq q U q k Tρ ρ∝ −

So uniform sampling can be obtained by setting:
0( ) ln ( )BU q k T qρ=

Whi h i j t th ti f th PMF

ρ0(q) is not known at the beginning, an iterative procedure is used to obtain 
i l i d i ti t th id l b ll t ti l

Which is just the negative of the PMF. 

successively improved approximations to the ideal umbrella potential. 



AUS Example

Bartels C, Karplus M: Multidimensional adaptive umbrella 
sampling: applications to main chain and side chain peptide 
conformations. J Comp Chem 1997, 18: 1450-1462.



Multi-Canonical Algorithm
In the canonical ensemble, probability distribution is:

/( , ) ( ) BE k T
B E T n E eρ −∝

At a lower T, ρB(E, T) is small in the high-energy region, and at a higher T, ρB(E,T) is 
small in the low-energy region. How to obtain the precise distribution at room T? By 
multi-canonical algorithm:

( , ) ( ) ( )mu muE T n E W E constρ ∝ ≡

The multi-canonical weight factor satisfies:
1( ) ( )muW E n E−∝

Which can be determined by a few iterations of simulations. 

The canonical distribution for wide range of temperatures can be obtained by 
the use of the re-weighting techniques:
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Example: Multi-Canonical Algorithm

Nakajima N, Nakamura H, Kidera A: Multicanonical ensemble generated by molecular dynamics simulations 
for enhanced conformational sampling of peptides. J Phys Chem B 1997, 101: 817-824.



The β-Hairpin of B1 Domain of Protein G

The hydrophobic sidechains are in green.

© Ronald Levy



• Replica exchange sampling* is a method to effectively sample rough energy landscapes which 

Replica Exchange Sampling: β-hairpin Folding
p g p g y p g gy p

have high dimensionality - the β -hairpin has 768 degrees of freedom

• ~20 MD simulations of the β-hairpin run in parallel over the temperature range 270 K -690 K.

• Every 50 MD steps MC replica exchange moves are attempted

• Total sampling time: 20 processors×4×106 step/processor = 80×106 steps
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Sugita Y, Okamoto Y: Replica-exchange molecular dynamics method for protein folding. Chem 
Phys Lett 1999, 314: 141-151.



• A way to combine data from simulations at various temperatures to obtain 

T-WHAM
y p

properties at one given temperature.

Energy distribution: 0

0
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En EE T
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Solve for n(E) and insert into 
expression for ρ(E;Ti).
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- Given ρ(Ej;T0) can predict histogram of energies at any temperature. 
- Select ρ(Ej;T0) that best reproduces observed histograms (maximum 
likelihood solution assuming multinomial-distributed counts).g )
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WHAM equations:{ Same derivation for joint 

probability ρ(x,E;T).
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© Ronald Levy

Gallicchio E, Andrec M, Felts AK, Levy RM: T-WHAM, replica exchange, and transition paths. J. Phys. 
Chem. B, 109 (14), 6722 -6731, 2005 



T-WHAM 

Two-Dimensional PMF

N WHAM T WHAMNo WHAM T-WHAM

No WHAM T-WHAM

∆Gmax=5 kcal/mol ∆Gmax=10 kcal/mol

© Ronald Levy

Gibbs free energy in this example



T-WHAM 
Free Energy Surface of the Protein G β-Hairpin 
With Respect to the (1,4) Principle Components

© Ronald Levy



Steered Molecular Dynamics
In SMD, time-dependent external forces are applied to a system, which induce unbinding 
of ligands and conformational changes in biomolecules on time scales accessible to MD 
simulations. 

( )f k x vt x+

Assuming a reaction coordinate x, we add an external force along the path, a simple way 
is by a harmonic spring:

( )0f k x vt x= + −

Similar to experiments by Atomic Force 
Microscopy, a "spring" of stiffness k is 
attached to the ligand and a constant pullingattached to the ligand and a constant pulling 
rate is applied to measure the adhesion 
forces while the ligand detaches from the 
protein.



PMF Calculation

• From equilibrium MD simulations using “umbrella sampling” 
d h i h d hi l i h d (WHAM)and the weighted histogram analysis method (WHAM) 

• From non-equilibrium SMD simulations using the Jarzynski 
equality (many samples) or local diffusion processes (singleequality (many samples) or local diffusion processes (single 
sample). 

Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K: Free energy calculation from steered molecular 
dynamics simulations using Jarzynski’s equality. J Chem Phys 2003, 119:3559-3566.

Park S, Schulten K: Calculating potential of mean force from steered molecular dynamics simulations.
J Ch Ph 2004 120 5946 5961J Chem Phys 2004, 120:5946-5961.

Calderon CP: On the Use of Local Diffusion Models for Path Ensemble Averaging in Potential of Mean 
Force Computations. J Chem Phys 2007, 126:84106-84111.



Helix-Coil Transition of 
Deca-Alanine in VacuumDeca Alanine in Vacuum

G lGoal: 
Systematic study of the methodology of free energy calculation
- Which averaging scheme works best 

Why deca-alanine in vacuum?
- small but not too small: 104 atoms

with small number (~10) of trajectories ?

- small, but not too small: 104 atoms
- short relaxation time  → reversible pulling → exact free energy

© Ioan Kosztin



2nd Law of Thermodynamics 
and Jarzynski’s Equality

x = x(t)

and Jarzynski s Equality

heat  Q
work W Stretching Deca-Alanine…work W

x = reaction coordinate (e.g., end-to-end distance, position of substrate along a 
channel)

2nd law of thermodynamics: 〈W〉 ≥ ∆F = F(x) - F(x0)
Jarzynski (1997):     〈 exp (-βW) 〉 = exp (-β∆F)

Statistical average, dominated by small 

© Ioan Kosztin

work values that arise only rarely:
difficult to estimate!



Cumulant Expansion of Jarzynski’s Equality

∆F  =  - (1/β) log 〈e-βW〉

= 〈W〉 - (β/2) ( 〈W2〉 - 〈W〉2 )

statistical error & 
truncation error

  〈W〉 (β/2) ( 〈W 〉 〈W〉 )

+  (β2/6) ( 〈W3〉 - 3〈W2〉〈W〉 + 2〈W〉3 )  +  •••

shift ∼ σ2 / kBT
ρ(W)

width σ

B

shift/width ∼ σ / kBTW × ρ(W)

W2 × ρ(W) width σW × ρ(W)

W3 × ρ(W) large in strong 
nonequilibriumW

e-βW × ρ(W)

© Ioan Kosztin



Potential of Mean Force (PMF)
( )0 0 (( ') )F Hβ β ⎡ ⎤∫ ( )0 0 (( ') ) 'F x He e x x d dβ β δ− −∝ ⎡ − ⎤⎣ ⎦∫ r, p r r p

PMF under H0

0F (x)( )

helix x

coil

© Ioan Kosztin



PMF from Jarzynski’s Equality

k

( )x r

Introduce an external parameter λ, which is correlated with the RC x: 

Guiding potential: [ ]2 0( , ) ( ) ( , , ) ( , ) ( , )
2
kh x r H r p H r p h rλ λ λ λ= − = +r

0( )t vtλ λ λ≡ = +
External Work: [ ]00

( ) ( ') '
t

W kv dt x t vtλ λ′= − − −∫
By Jarzynski’s equality:By Jarzynski s equality:

[ ]{ }0 0exp ( ) ( ) exp( )t tF F Wβ λ λ β →− − = −

© Ioan Kosztin

What we get is PMF under H: F(λ), how can we get F0(x)? 



Stiff Spring Approximation

∫[ ] [ ]
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PMF (stiff spring approximation):

When k is large, most contribution to the integral comes from the region around: 'x λ=

( p g pp )

00 1( ) ( ) log tWF F e βλ λ →−

0( ) ( )F Fλ λ≈

0
0( ) ( ) log t

tF F e βλ λ
β

→= −

k is large enough, so that the RC closely follows the constraint center λ.



SMD: Reversible Pulling  (v = 0.1 Å/ns)
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SMD: Irreversible Pulling  ( v = 10 Å/ns )
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SMD: Irreversible Pulling  ( v = 100 Å/ns)
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PMF from Umbrella Sampling

( )
( )

(

( )

)

'

( ') '
U

xUe

d

xx xβ

β δ

δρ −

−

⎡ − ⎤⎣ ⎦= =

⎡ ⎤∫ r

r

probability

histogram built 
from 
equilibrium MD 

( )(

)

)

(

'U

U

d e x

ed

x
β

β δ
−

⎡ − ⎤⎣ ⎦= ∫
∫ r

rr r

r

probability 
distribution 
(density)

simulation

titi f ti (Q)
∫

( )U x

( )( ')( ') 'U xβ δ− ⎡ ⎤⎣ ⎦

partition function (Q)

( )
( ) ( )

( )( ') '

'nU

U

n

xx e x x

Q e x x

β

β

ρ δ

δ−

= = ⎡ − ⎤⎣ ⎦

= ⎡ − ⎤⎣ ⎦
x'

r

r

n-th biasing

x
( )

( ) ( )' 'n

n

U xn

e x x
Q
Q e x xβ

δ

δ−

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

r

rn-th biasing 
potential Un

( ) ( )n

n
e x x

Q
δ= ⎡ − ⎤⎣ ⎦r

© Ioan Kosztin



Umbrella Sampling w/ WHAM

0.2 ns2 ns
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SMD-Jarzynski Umbrella Sampling
Comparison

SMD Jarzynski
(same amount of simulation time)

Umbrella Sampling

simple analysis                 
uniform sampling of the RC

coupled nonlinear equations (WHAM)
nonuniform sampling of the RC
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‘Rapid’ Free Energy Methods



Motivation
Free energy calculations are very important in computer-aided drug design. 
However, if the calculations takes longer to perform than a candidate drug 
molecule can be synthesized and tested then there is little practical benefitmolecule can be synthesized and tested, then there is little practical benefit 
from attempting the calculation. 

© A. H. Juffer

Free energy calculations are time-consuming. It is necessary to develop 
some alternative methods, which still being based upon ‘exact’ statistical 
mechanics, are intended to provide free energy with less computational 
ff t th f ll f l l tieffort than a full free energy calculation.



Linear Interaction Energy (LIE)

A semi-empirical method for estimating absolute binding free energies of ligands 
bi di t t i Th i t ti b t th li d d t i l t ibinding to proteins. The interaction between the ligand and protein or solvent is 
broken down into the electrostatic and van der Waals contributions. 

( ) ( )el el vdw vdw
l p l s l p l sF E E E Eα β− − − −∆ = − + −

To determine ∆F one thus needs to perform just two simulations, one of 
the ligand in the solvent and the other of the ligand bound to the protein.



Linear Interaction Energy (LIE)

( ) ( )el el vdw vdw
l p l s l p l sF E E E Eα β− − − −∆ = − + −

What remains is to determine values of the parameters α and β. By some 
analytical theories the parameter α related to the electrostatic contribution is

( ) ( )

analytical theories, the parameter α related to the electrostatic contribution is 
around 1/2. 

0.5α ≈

For the van-der-Waals component no such analytical theory exists. β
depends on different force field, and the nature of the binding sites 
(different distributions of polar and non-polar groups in different binding 
sites).



Example: LIE
Binding free energies of different compounds binding to AvidinBinding free energies of different compounds binding to Avidin
Wang W, Wang J, Kollman PA: What determines the van der Waals coefficient β in the LIE (Linear 
Interaction Energy) method to estimate binding free energies using molecular dynamics simulations?
Proteins Struct Funct Genet 1999, 34:395-402. 

The weighted non-polar desolvation ratio (WNDR) is 
the ratio of all non-polar groups’ weighted desolvation 
SAS to total weighted desolvation SAS. 

It is generally more accurate to calibrate β if experimental 
binding data for similar ligands is available. Choose a value 
based on the WNDR could give better results. 



MM/PBSA 
(Molecular Mechanics Poisson-Boltzmann Surface Area) Method

The MM/PBSA approach represents the post-processing method to evaluate free 
energies of binding or to calculate absolute free energies of molecules in 
solution, which combines the molecular mechanical energies with the 
continuum solvent approaches. In this method, we usually carry out a MD 
i l i i h li i d i Th hsimulation with explicit water and counterions. The we post-process these 

structures, removing any solvent and counterion molecules, and calculate the 
Gibbs free energy.

MM PBSA MMG E G TS= + −Calculated average free energy

Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, 
Cieplak P, Srinivasan J, Case D, Cheatham TE, III: Calculating structures and free energies of complex 
molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000, 33:889-897.



MM/PBSA

The components in MM/PBSA equation: MM PBSA MMG E G TS= + −

MM bond angle torsion vdw elecE E E E E E= + + + + average molecular mechanical energy

PBSA elec nonpolarG G G= + Solvation free energy

elec PBG G= Numerical solution of Poisson-Boltzmann equation or

2 2 0.5
1 1

1166.0(1 )
( )ij

N N
i j

elec GB D

q q
G G

r a eε −= = − −
+

∑∑ Generalized Born model
1 1 ( )i j ij ijr a eε = = +

nonpolarG SA bγ= + Solvent-accessible surface area

MMTS− Solute entropy, which is likely to be much smaller then 
other terms. It can be estimated by harmonic analysis or 
normal mode analysis. 



Example:  MM/PBSA (I)
Binding free energy of protein ligandBinding free energy of protein-ligand

complex protein ligandG G G G∆ = − −

T th d ( ) tTwo methods: (a) separate 
simulations of complex, 
protein, and ligand or (b) 
evaluate all three terms 

i j t th h tusing just the snapshots 
from a complex simulation. 

(b) is a good approximation in 
cases that, there are no large 
conformational changes of 
protein and ligand before and 
after their association. 

Kuhn B, Kollman PA: Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative 
prediction of their relative affinities by a combination of molecular mechanics and continuum solvent 
models. J Med Chem 2000, 43:3786-3791.



Binding free energy of protein RNA
Example:  MM/PBSA (II)
Binding free energy of protein-RNA

Reyes C, Kollman PA: Structure and thermodynamics of RNA-protein binding: using molecular dynamics 
and free energy analysis to calculating both the free energies of binding and conformational change. J Mol 
Biol 2000, 297:1145-1158.



MM/PBSA

• By using a continuum model, integrating out all the solvent 
coordinates;

• Calculating the absolute free energy directly instead of theCalculating the absolute free energy directly instead of the 
relative free energy along a RC;

l b t ft l l t ∆G i t bl• large errors, but we can often calculate ∆G in respectable 
agreement with experiment;

• Rate-limiting step is MD, but a hierarchy of techniques can be 
used.
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