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Effect of Charges in Biology

• Mg2+ binding to RNA or DNA

• Zn2+ binding in gene regulation

• Ca2+ binding in signal transduction (calmodulin etc.)

• signal transduction through phosphorylation (Tyr, Ser, 
His)

• ions form organizing centers for protein folding

• steering of protein assembly

• formation of lipid bilayers (membranes)

• etc…



AchE



Electrostatic Potentials and Fields

• Electrostatic interactions are very long-ranged (recall the 1/r 
dependence of the Coulombic term in the MM energy function). 

• The electrostatic potential is a scalar quantity, i.e. it has no 
direction.

• Suppose we place a charged particle into an electric field. The 
electrostatic potential is the quantity that when multiplied by the 
charge on the particle tells us the energy required to place the 
particle in the field.

• The electrostatic field is a vector that tells us the gradient of the 
electrostatic potential. When multiplied by the charge on the particle 
it tells us the force acting on the particle.



Coulomb Potential
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Dieelectric Screening
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Contributions Inside Molecule
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A Molecule In Solution

• In MD, screening is sometimes modeled implicitely by distance-
dependent dielectric (1/r dependence of ε,  1/r2 term in the MM 
energy function). See earlier notes.

Continuum electrostatics: 

• Inside protein εp∼2-4.

• Outside molecule εw∼60-80 (solvent).
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Continuum Electrostatics

Conceptual Model:

Protein: Low dielectric region
With fixed partial charges

Solvent: High dielectric region 
with unlocalized (mobile) charges

A continuum electrostatic model describes molecules at atomic detail 
using a macroscopic description.
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Poisson Equation
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One of the fundamental equations of classical electrostatics



Ionic Distribution
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valency

electron charge: 1.602 10-19 C

potential in J/mol units

gas constant R = NA x kB = 8.315 J/(mol K) temperature in K



Poisson-Boltzmann Equation
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Poisson-Boltzmann Equation
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Linearized Poisson-Boltzmann Equation
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Properties of Solutions of Linear PBE
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Discrete Model
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Assigning Charges to a Grid
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Tri-Linear Interpolation



Numerical Solution (Finite Difference)
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Integration over grid voxels:

(Gauss theorem) 



Numerical Solution (Finite Difference)
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Focusing/Boundary Conditions
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PBE FlowChart
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GRASP



GRASP
• http://trantor.bioc.columbia.edu/grasp/
• free for academic use
• currently runs on SGI only



GRASP



DelPhi
• Developed, along with Grasp, by Barry Honig’s

group, now at Columbia
• Difference between DelPhi and GRASP:

– Grasp was intended to be an interactive molecular 
graphics program with a very rough PDB solver. 
Uses a 32x32x32 grid size.

– DelPhi is intended for quantitative analysis, and 
therefore is more robust. Uses a 65x65x65 grid 
size.

• For the most accurate figures, use DelPhi to solve 
the PB-equation then use a visualization program to 
create images.



DelPhi Input File
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Radius File
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DelPhi Charge File
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Example DelPhi Output File



Visualization of DelPhi Electrostatic 
Potentials

SPDV (Expasy):

http://au.expasy.org/spdbv/text/epot.htm



Visualization of DelPhi Electrostatic 
Potentials

VMD

http://agave.wustl.edu/apbs/doc/html/tutorial/x265.html



Visualization of DelPhi Electrostatic 
Potentials (cont.)

UCSF Chimera

http://www.cgl.ucsf.edu/chimera/



Questions (PBE)?



Brownian Dynamics
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BD Simulation
• Brownian dynamics (BD) simulations can be used to simulate the diffusion and 
association of molecules in solution.

• Brownian motion is the random movement of solute molecules in dilute 
solution that results from repeated collisions with solvent molecules.

• The basic principle involved in BD simulations is similar to that involved in 
molecular dynamics simulations, but introduces a few new approximations that 
allow us to perform simulations on the microsecond timescale (remember that 
MD of proteins is limited to around 10 nanoseconds).

• The technique has been used to calculate the association rates of enzymes 
with their substrates (e.g. acetylcholinesterase with its substrate acetylcholine). 
For diffusion-limited enzymes, this association of the enzyme and substrate is 
the rate-limiting step of the reaction.

• The simulations allow us to understand how association rates are affected by 
mutations in the protein, and by the presence of dissolved ions such as Na+ and 
Cl- in the solution. 



Example: Fasciculin - AchE



Example: Fasciculin - AchE



Overview of BD Method
• When we replace explicit solvent by an implicit representation, we must make 
sure that we don't neglect any important properties of the solvent.

• We have already discussed the effects of water on the electrostatic properties 
of molecules (i.e. its screening behaviour). We have seen how these effects 
can be approximated in a simplified solvent model by setting the dielectric 
constant appropriately (see the Electrostatics pages).

• Now, we must also take account of water's effects on the dynamic behaviour
of solute molecules in solution. Water has two main effects: 

• It is a viscous solvent: it exerts a frictional force on a diffusing solute, slowing 
it down.

• Collisions with water molecules add a random component to a solute's 
motion. 

• By incorporating both of these effects, BD techniques allow realistic simulation 
of the diffusion of molecules in solution without the need to include any explicit 
solvent molecules.



Theory (I)

• The basic algorithm used in BD is similar to that in MD: we use the 
positions of our particles at time t, together with the forces acting on 
them, to estimate their positions at some later time t + ∆t. However, in 
BD we typically use much larger time-steps (>1ps) since we don't have 
to worry about bond stretching etc. 

• The algorithm that we use in BD is due to Ermak & McCammon. The 
translational behaviour of a particle is dictated by: 

where D is the translational diffusion constant of the particle, F is the 
force acting on the particle, and R is a random displacement added in 
to mimic the effects of collisions with solvent molecules.

r(t+∆t)=r(t)+DF∆t/kT+R



Theory (II)

• The translational diffusion constant of a particle is a measure of the 
speed with which it diffuses through solution: the higher the diffusion 
constant, the faster it diffuses.

•Translation diffusion constants can be estimated using the Stokes-
Einstein relationship: 

where η is the solvent viscosity and a is the radius of the particle, i.e. 
bigger particles diffuse slower. A similar expression can be used to 
estimate the rotational diffusion constant.

D=kT/6πηa



Theory (III)

• R, the random displacement, is dependent on D.  R is obtained using 
a random number generator, and is required to have the following
statistical properties: 

The first expression says that the average value of the random 
displacement is zero. This has to be true, otherwise, even with no 
other forces acting on the particle, it would gradually drift in one 
direction, which would make no sense. The second expression 
ensures that the diffusive behavior of the particle is correctly
reproduced (Einstein diffusion equation).

<R> = 0
<R*R> = 6D∆t



Theory (IV)

•In BD simulations, F, the force acting on the particles, is generally 
assumed to be purely electrostatic and is computed from solving the 
PBE numerically.

•We reject any step that causes overlap of the particles, i.e. we ask the 
program to pick another random number that doesn't cause overlap.



BD Simulation

b: start surface

q: quit surface



Calculating Association Rate Constants

We can use BD to calculate the association rate constant for an enzyme 
binding its substrate using the following relation: 

k is the association rate constant, i.e. the quantity we wish to compute and 
k(b) is the steady state rate at which a diffusing substrate molecule first 
comes within distance b of the enzyme. β is the probability that having come 
within this distance b, the substrate proceeds to associate with the enzyme. 

k=k(b)*β



The Smoluchowski Equation

The rate at which two particles come within a given separation b can be 
calculated analytically using the result obtained by Smoluchowski: 

where D is the relative diffusion constant of the two particles. This is simply 
the sum of the diffusion constants of the enzyme and substrate - note that 
because the diffusion constant of the substrate is much larger than that of 
the enzyme, it dominates D.

Calculating k(b) is therefore easy. 

k(b)=4π Db



Obtaining the Association Probability β
•To calculate β, we perform many separate BD trajectories.

•Each simulation starts with the substrate at a distance b from the enzyme. The 
electrostatic potential should be approximately constant over the b-surface. 

•In principle, all we have to do now is simulate the motion of the substrate until it 
either binds or escapes (quit or q-surface). 

•Note that some substrate molecules that pass through the q-surface might 
return and bind to the enzyme if we continued the simulation, i.e. they may not 
actually go on to fully escape. To account for this possibility, we have to correct 
our calculated value of β (see references at end of class notes).

•We define binding using a set of reaction criteria. We monitor the distance 
between an atom of the substrate and a point on the enzyme that defines the 
entrance to the active site. 

•In order to obtain statistically meaningful estimates of β, we may have to carry 
out thousands of trajectories. β is simply the fraction of successful trajectories.



Animation



UHBD

• UHBD is a free, well-documented program developed by J. Andrew 
McCammon's group (originally at UH, now at UCSD) for carrying out 
Brownian dynamics simulations of protein-ligand association events. 

• Local development at UH continued by Prof. Jim Briggs.

• Available at http://adrik.bchs.uh.edu/uhbd.html



Summary

• Electrostatic forces are the most important forces in chemistry and 
biology.

• The electrostatics of a macromolecule can be approximated by 
continuum electrostatics (Poisson-Boltzmann Equation).

• The Poisson-Boltzmann Equation can be solved numerically for 
arbitrarily shaped molecules.

• Brownian Dynamics simulations mimick protein-ligand association and 
allow calculation of binding rate constants.



Pros/Cons: Continuum Electrostatics

Pros:

• simple model that describes electrostatics aspects of biomolecules
very well

• computationally fast

• suitable for binding energy calculations (see following class)

Cons:

• limited conformational flexibility (requires modification of model)

• model may break down when ions from solvent become localized



Resources and Further Reading

WWW: 
http://mccammon.ucsd.edu/~chem215
http://trantor.bioc.columbia.edu/programs.html (GRASP, DelPhi)
http://adrik.bchs.uh.edu/uhbd.html

Textbooks:
Bourne & Weissig, Chapter 21

Papers:
Davis and McCammon, Chem. Rev. 1990. 90:509-521. 
Warshel and Papazyan, Current Opinion Struct. Biol. 1998. 8:211-217. 
Davis et al. Comput. Phys. Commun. 1991. 62:187-197.
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