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Protein Dynamics is Hierarchical

@ O

Vibration of bonds: 10 s

Protein folding/unfolding Large-scale functional motions

10°s, 107 s, s and even longer



Dynamics of Biological Systems
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Collective Coordinates and
Dimensionality Reduction
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Collective Coordinates

 Diagonalize Hessian matrix
C=UAUT
 Principal Component Analysis from MD

Ci :<(Xi —<xi>)(xj _<Xj>)>
 Normal Mode Analysis
C, =0’V /ox; ox;

Functional motions of a protein may be represented

by only a few low-frequency modes.
© Zhiyong Zhang



Principal Component Analysis

© Sansom lab, http://indigol.biop.ox.ac.uk/MD_workshops/



Background

A mathematical technique, used to find patterns in high-dimensional datasets, such as
protein structures.

Allows us to find relationships/patterns, which would be invisible from a pure visual
examination.

Can be applied to MD simulation trajectories to detect the global, correlated motions of
the system (the principal components).

Why are the PCs important?
Amadei et al. argue that we can separate the configurational space into 2 sub-spaces:

1. The Essential subspace: correlated motions comprising only a few of the degrees of
freedom available to the protein = FUNCTIONALLY IMPORTANT

2. The “Irrelevant” subspace: independent, Gaussian fluctuations, which are
constrained and of no/little functional relevance — act locally

© Sansom lab, http://indigol.biop.ox.ac.uk/MD_workshops/



Overview
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Eigenvalues and Eigenvectors

Matrix algebra
Online introduction, e.g.

http://www.sosmath.com/matrix/matrix.html



Theory (1)

Example: a 500 frame trajectory of a 300 residue protein.
BUILDING THE COVARIANCE MATRIX FROM YOUR TRAJECTORY:
Populate the 900 x 900 matrix (X, y & z component of each Ca atom):

Cov(A,B) = >n. (A, —A)* (B, —B) A = time-averaged position
n

positive: both degrees of freedom move in same direction
negative: degrees of freedom move in opposite directions
zero: degrees of freedom are independent of each other

© Sansom lab, http://indigol.biop.ox.ac.uk/MD_workshops/



Theory (2)

The covariance matrix is then diagonalized — the columns of the transformation
matrix become the eigenvectors, each associated with an eigenvalue.

Eigenvectors are then sorted by eigenvalue — the highest eigenvalues
represent the most significant relationship between the dimensions:
these are the principal components.

Eigenvectors represent a correlated displacement of groups of atoms through space
Eigenvalues represent the magnitude of this displacement (nm?)
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Visualizing PCs (1)

The motion described by an eigenvector can be visualized by projecting
the trajectory onto the eigenvector and taking the 2 extreme projections
and interpolating between them to create an animation.

Projection of atom from a trajectory onto eigenvector

Atom displacements (nm)
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Visualizing PCs (2)

Porcupine plots can be used to display the motion
described by an eigenvector in a static image. '

A cone extending from the C-alpha position
shows the direction of the atom along the
eigenvector.

Covariance plots are a tool to visualize
atoms which have a high correlation
coefficient from the covariance matrix

© http://dynamite.biop.ox.ac.uk/dynamite



Validation

How relevant are the PCs we have calculated and visualised?

Divide simulation into 2 or more parts and compare the eigenvectors
for each part, to measure subspace overlap:

Higher overlap indicates sampling of only a single energy minimum
Lower overlap indicates more complete sampling

Can also measure cosine content of eigenvectors.

Hess et al. showed that the first few PCs of high-dimensional random
diffusion are cosines and that several protein simulation PCs resemble
these cosines (see Suggested Reading).

So high cosine content may mean that the fluctuations in your simulation
are due to random diffusion:

Typically seen when simulation timescales are too short to reach energy barriers

© Sansom lab, http://indigol.biop.ox.ac.uk/MD_workshops/



Normal Mode Analysis

® An alternative method to study dynamics of molecules.
® Does not require trajectory, works with single structure.
® |t is based on the theory of vibration.

® Conformational fluctuation is given by a superposition of normal
modes.



Harmonic Oscillator

kK M ko
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Coupled

Oscillators : :
—> m—
AXy AX,
Xq Xo
d*Ax _
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Conformational Fluctuation

...1s given by a superposition of normal modes:

(AX1] A (1jcos(a)1t+5 )+—= a ( ' jCOS(a)zt+52)
AX,

M Lower frequency mode
VWV

: @, =Jk/m
%m Higher frequency mode

w,=~3k/m
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Eigenvalue Problem

d? [ Ax 2k -k Ax, Ax,) 1 (1 1Y Auy
m—; + =0 (== =—
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Matrix Diagonalization
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Harmonic Approximation

iy
L]
-----

Approximation:

Potential energy => harmonic
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Harmonic Approximation

The potential energy must be written in the following form,

1
E=E, +EZ R AX AX;
I ]

The form of potential energy for a molecule is usually very
complicated. However, we can get such a form around a
minimum-energy point, because the function can be written as
follows:

E=EO+ZéAxi+—l ﬁAxiAx.+i 7E AXAXAX, + v,
& 21~ KX P31 X, )

Taylor series
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NMA using Molecular Mechanics

Full atomic representation and MM interactions require:

e energy minimization
« diagonalization of the 2"d derivative of the potential energy (Hessian)

e Hessian i1s 3N x 3N matrix (memory requirements!)



© Atsushi Matsumoto
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Three-Atomic Molecule
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Multi-Atom Molecule
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Example

Adenylate kinase: Cytochrome c:
Mode 1 (2.95 cm 1) Mode 2757 (1519 cm 1)
Collective Localized

motion motion

© Florence Tama



Success Story

Adenylate Kinase =>

large conformational change upon ligand binding

1 normal mode can represent up to 80-90 % of the overall conformational change
© Florence Tama



Computational Challenges

NMA requires: Problems for large systems:
» minimization » expensive, cumbersome (MM)
»diagonalization of the » memory requirements

Hessian matrix



Memory-Efficient Diagonalization

DIMB => Diagonalization in mixed basis

(Perahia & Mouawad, 1995, J. Comp. Chem. 19, 241)

Group theory => Use symmetrical properties of viruses

(Roux & Karplus, 1988, Biophys. J, 53, 297; Simonson & Perahia, 1992, Biophys. J., 61, 410; van Vlijmen & Karplus, 2001,
J.Chem. Phys, 115, 691)

RTB => Rotation Translation Blocks method gives approximate low-
frequency NM ( Tama et al. 2000, Proteins: Struc. Funct. Genet., 41, 1)

— block =1 or several residues
ng
— rotation + translation of block => new basis
. — expression of Hessian in this new basis

? — diagonalization of a matrix 6ng*6ng

© Florence Tama



Reducing the Number of Variables

Cartesian coordinate space
3N-6 variables are necessary

N : number of atoms

Torsion angle space

Bond angles and bond lengths are fixed, and

only torsion angles are allowed to vary.
Number of variables: ~1/10

© Atsushi Matsumoto



Reduced NI\/IA of DNA

- — = -

DNA

The relative position and orientation of adjacent base pairs are expressed
by six "step" variables ---(Tilt, Roll, Twist, Shift, Slide, Rise). The entire
structure of DNA with (n+1) base pairs is expressed by 6n variables.

© Atsushi Matsumoto



Definition of Base-Pair Step Parameters

Slide (Dy) Shift (Dx)
Twist (£2) Roll (p) Tilt{r)

Image based on Cambridge convention of base pair parameters:
Dickerson, R. E. et al. (1989) "Definitions and nomenclature of
nucleic acid strutcutre parameters”, J. Mol. Biol. 208, 787-791

© Atsushi Matsumoto



Energy Function
€45

== = The entire conformational energy E of DNA is
E34 represented as a sum of dimer step energies.

E = €15+E€03+E34+Ey5

The dimer step energy is a function of the base-pair step parameters
0i (=Tilt, Roll, Twist, Shift, Slide, Rise).

Ennet =(1/2)22 F1(01-67)(067) | v

O; : Instantaneous value n
67 : Equilibrium value

8n n+1

It .

fij and 67 are constants that depend on the type of dimer step,
e.g., the constants for the AA dimer are different from those for the AT step.
(Olson et. al., Proc. Natl. Acad. Sci.,U.S.A., 1998, 95, 11163-11168)

© Atsushi Matsumoto



Roll (degree)

Statistical
Mining of PDB

© Atsushi Matsumoto

Parametrization
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Results (DNA)

bending modes twisting modes  stretching modes

_ﬁ@ﬁb =

Ny @I ===

Higher frequency mode

V AN @roy =

FIGURE 2 Schematic illustration of representative low frequency nor-
mal modes of an elastic rod. The arrows point in the directions of bending,
twisting, and stretching motions in each mode.

Atsushi Matsumoto and Wilma Olson, Biophys. J., 2002, 83:22-41.



Elastic Network Model

Monique M Tirion (1996) Phys Rev Lett. 77, 1905-1908

Simplified force-field: no MM, already minimized

Possibility to reduce level of detail (up to 1 point for 40 residue)

© Florence Tama



Vector Quantization

Encode data (in 9R4=3 ) using a finite set {Wj} (J=1,...,k) of codebook vectors.
Delaunay triangulation divides R> into k Voronoi polyhedra (“receptive fields”):

Fig. 3. Partitioning of two-dimensional space (N = 2) into
L =18 cells. All input vectors in celi C; will be quantized as
the code vector y. The shapes of the various celis can be
very different.

Encoding Distortion Error: E = Z m;

Vi—WiG

I (atoms,
voxels)

Linde, Buzo, & Gray (1980): Gradient descent finds nearest local minimum of E.
Martinetz & Schulten (1993): Global search with topology-representing neural nets.



Choice of Cut-off

Example: Adenylate kinase,
214 residues

1 codebook vector = 1 residue
=10-12 A cut-off OK

Reducing number of codebook vectors

= {00 sparse connectivity

Inspect the pair-distance distribution of
codebook vectors and increase cutoff
beyond first peak.

© Florence Tama
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X-ray
structure

|_evel of Detail not
Important

Open-Close

214 codebook
vectors

Projection onto atomic normal modes
~ 1 for the first few modes

!

Low frequency NM are similar to atomic NM

50 codebook
vectors

Models can reproduce functional rearrangements even
at 30A resolution

© Florence Tama



Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of
Density Map




Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of Vector
Density Map Quantization

A 4




Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of Vector
Density Map Quantization

A 4
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Choice of Cut-off —




Application to EM Data

RNA Polymerase, S. Darst et al.
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Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of
Density Map
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Examples

Ribosome RNA Polymerase







NMA

Darst et al, PNAS, 2002, 99:4296

70% overlap between the direction of the
observed displacements with the direction
of mode 1



Quick NMA for Atomic Structures

http://dirac.cnrs-orleans.fr/MMTK

o - B 4
e e L™ F o
- -
e The Molecular Modelling Toolkit 2.2
Examples
Download The Molecular Modeling Toollat (BAWTE ) 12 an Open Source program brary for molecular
TTsefil links sj]mulation applications. In addition to prowiding ready-to-usze implementations of standard
argorithims, MITE setwes as a code basis that can be easily extended and modified to deal
See also with standard and non-standard problems i melecular simulations.
LIWITE Wik
Python WITE is developed i and around Python, a high-level object-oriented general-purpose

ScientificPythen | programming language. In fact, BWTE consists of nothing more than a collection of Python
DotnainFinder modules, most of which witten in Python itself, with only a small time-critical part (e.g.
energy evaluation) written in C. MWTE apphcations are Python programs that make use of
theze modules. Python was chozen because it allows rapid code development and testing,
hinsen@cnrs- while providing a very converntent C mterface for dealing with time-critical calculations.
otleans fr
LIWTE 15 based on an object-oriented model of molecular systems. A system iz made up of
PYTHON atoms, molecules, and complexes, all of which are defined m MMTE's chemical database &
[ a R et B molecule, for example, 15 defined in terms of atoms, functional groups, bonds, force field
parameters, etc. Itis possible to introduce specialized versions of these objects; for example,

e, LINWTE has special support for proteins, which are basically chemical complexes, but can be
*“'*‘Hﬂ FMEHTS handled in terms of peptide chams, residues, sidechamns eto.



What are the Limitations of NMA?

We do not know a priori which is the relevant mode,

but the first 12 low-frequency modes are probable
candidates.

The amplitude of the motion is unknown.

NMA requires additional standards for parameterization,
l.e. a screening against complementary experimental
data to select the relevant modes and amplitude.

Expert user input / evaluation required

Not based on first principles of physics (like MD).



What are the Limitations of MD?

sampling problem

W i n.\__4 7 _*.'\ lr Y

Rotation of buried sidechains
Local denaturations <
Allosteric transitions ms

w«(ﬁ!

HUs
Hinge bending < ns
Rotation of surface sidechains :[ \
Elastic vibrations pS Energy Surface —
Bond stretching { Exploration by Simulation..
fs © Jeremy Smith

Molecular dynamics timestep —»




Solution: Enhanced Sampling MD
drive MD by collective coordinates (PCA or NMA)

First approach with PCA:
“Essential Molecular Dynamics”

Amadei, Linsen, Berendsen
“Essential Dynamics of Proteins” — Proteins (1993), 17:412-425

Use the PCs from free MD to drive a protein from one conformation to another
Used by Daidone et al. to study Cytochrome c folding with MD
Only 106 degrees of freedom out of a total 3000 were used to bias the simulation



Amplified Collective Motion (ACM)

Zhang et al., Biophys J. (2003) 84:3583-93.

Velocities of { >

C.O.M of c
residues
Velocity 2 O | SRVARRYIRYS
- ) V — ( Vaea)e -~ " V :V— Othel’
s;?éefot\;von 1 ;|: Z_l c ~l | orthogonal 2 1 velocities

frequency T, =800K T,=300K
modes from
NMA

\7 — Sh_\>/1+ SK/Z
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Folding/Unfolding of S-Peptide Analog

Zhang et al., Biophys J. (2003) 84:3583-93.

T=358K

T=274K

ACM 30-ns 3-modes @ 358K + other-DOF @ 274K
Control simulation 30-ns all-DOF 274K
Implicit water model: Generalized Born

© Zhiyong Zhang



Folding/Unfolding of S-Peptide Analog

© Zhiyong Zhang




Domain Motions in Bacteriophage T4
Lysozyme (T4L)

Closure mode

(178L vs 152L)
© Zhiyong Zhang
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Projections onto the Functional Subspace
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ACM: 3-ns
3-modes @
800K other
@ 300K
Standard
MD 3-ns all
@ 300K
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Myosin: ACM vs. MD

MD simulation



Global Collective Coordinates:
What are the Limitations?

In NMA, we do not know a priori which is a functionally relevant mode,
the first 12 low-frequency modes are probable candidates.

In PCA, the global modes don’t converge due to time limitations of the
molecular dynamics simulation (sampling problem):

Balsera et al. argue that PCA is not useful for identifying long-timescale
protein motions and for reduced-dimension simulations.

Balsera, Wriggers, Oono, Schulten
“Principal Component Analysis and Long Time Protein Dynamics”
J. Phys. Chem. 100:2567-2572 (1996)

The motions identified are only applicable to the timescale analysed.



Global Collective Coordinates:
What are the Limitations?

 Both PCA and NMA break the symmetry of structures due to forced

orthogonalization:




Solution: Local Feature Analysis

© Zhiyong Zhang



Local Feature Analysis (LFA)

Goal: an alternative statistical theory that describe dynamic features locally and
that does not suffer from the sampling and orthogonalization problems.

Unlike the global eigenmodes, LFA describes objects in terms of statistically
derived local features and their positions.

WXy

Is LFA applicable to protein dynamics?

From: Penev PS, Atick JJ: Local Feature Analysis: A General Statistical Theory for
Object Representation. Network: computation in neural systems 1996, 7:477-500.



Local Feature Analysis (LFA)
- Theory (1)

Covariance matrix from the MD simulation: C(i; j) = (Az;Ax;) = ((@; — (z,)) (z; — (z;)))

3N 3N 3N

PCA: C(i, j) =) U.(i)\T.(j) —> PCAoutput: A, => U, (i)Az; =) K, (i)Az,
r=1 i=1 i=1
o 8 i 1
General form for the LFA kernel: K (i, j) = > W, (1)Q,,V.(j) — K(i, j) = w.,.(-i)Tw,. ()
r, s=1 r=1 VA

Residual correlation: (O(:)O(j)) = > U,.(i)¥,.(j) = P(i, j)

r=1



Output Correlation




Local Feature Analysis (LFA)
- Theory (I1)

We replaced the n global PCA modes with the full 3N LFA output functions.
Therefore an additional dimensionality reduction step is required in the LFA
output space. We approximate the entire 3N outputs with only a small subset
of them that correspond to the strongest local features by taking advantage of
the fact that neighboring outputs are highly correlated.

|M|
Reconstruct the outputs: O™(i) = ) ap(i)O(iy,)

m=1
| M

Optimal linear prediction coefficients: (1) =Y P(i, i) (P )i,
=1

Average reconstruction mean square error:  E"° = <Hf_‘)““'(i)\|2> = <HO(£) — 0™(i) \|2>



RMSF inm)
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Sparsification

1 | L | 1 1
0 50 100 150
Atom Index

(@) The first 4 PCA
modes were used to do
LFA, n=4; (b) n=8, (c)
n=12, and (d) n=15. (e)
Root-mean-square
fluctuations of C_alpha
atoms in T4L.
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Upper 50K Domain

Essential Light Chain

Converter Domain/Lever Arm

Twelve seed atoms Twelve local dynamic domains



Time window 2

Convergence Properties

Overlap between 15 modes from first and second half of 10ns trajectory
(T4 lysozyme, standard MD)
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Convergence Properties
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The intrinsic dynamics of local domains is more extensively
sampled than that of globally coherent PCA modes.



Outlook: Predicting Functional Motion

It appears that PCA and NMA over-estimate the coherence of global
motion across large biopolymers and create artifacts due to
orthogonalization.

LFA captures local dynamic features reproducibly and is less
sensitive to the MD sampling problem.

We perform a statistical analysis that emphasizes dynamic domains
that are moving independently from each other.

LFA paper just appeared in Profeins (Zhang & Wriggers, 2006)



Resources and Further Reading

WWW:
http://www.sosmath.com/matrix/matrix.html
http://dirac.cnrs-orleans.frMMTK
http://dynamite.biop.ox.ac.uk/dynamite

Papers:

L. I. Smith “A tutorial on Principal Component Analysis” (2002) e.g. at
http://kybele.psych.cornell.edu/%7Eedelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Monique M Tirion (1996) Phys Rev Lett. 77:1905-1908

Zhang et al., Biophys J. (2003) 84:3583-93.

Chacén et al. J. Mol. Biol., 2003, 326: 485-492.

Hess, Phys. Rev. E 62:8438-8448 (2000)
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Text Book:
Schlick, Chapter 8.2
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