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Protein Dynamics is Hierarchical 

Vibration of bonds: 10-15 s

Large-scale functional motionsProtein folding/unfolding

10-6 s, 10-3 s, s and even longer



Not accessible by 
standard molecular 
dynamics simulation

Dynamics of Biological Systems

© Florence Tama



Collective Coordinates and 
Dimensionality Reduction
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Collective Coordinates

• Principal Component Analysis from MD

( )( )ij i i j jC x x x x= − −

• Normal Mode Analysis

2
ij i jC V x x= ∂ ∂ ∂

TC U U= Λ

• Diagonalize Hessian matrix

Functional motions of a protein may be represented 
by only a few low-frequency modes.

© Zhiyong Zhang



Principal Component Analysis

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/



Background
A mathematical technique, used to find patterns in high-dimensional datasets, such as 

protein structures.

Allows us to find relationships/patterns, which would be invisible from a pure visual 
examination.

Can be applied to MD simulation trajectories to detect the global, correlated motions of 
the system (the principal components).

Why are the PCs important?

Amadei et al. argue that we can separate the configurational space into 2 sub-spaces:

1. The Essential subspace: correlated motions comprising only a few of the degrees of 
freedom available to the protein = FUNCTIONALLY IMPORTANT

2. The “Irrelevant” subspace: independent, Gaussian fluctuations, which are 
constrained and of no/little functional relevance – act locally

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/



OverviewMD trajectory

Construct & diagonalize
covariance matrix

Eigenvectors, 
ranked by eigenvalue

Analyse eigenvectors:
eg. Visualisation of motions

eg. Calculate subspace overlap

Global, concerted motions

Constrained, fluctuations

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/



Eigenvalues and Eigenvectors

Matrix algebra

Online introduction, e.g.

http://www.sosmath.com/matrix/matrix.html



Theory (1)

Example: a 500 frame trajectory of a 300 residue protein.

BUILDING THE COVARIANCE MATRIX FROM YOUR TRAJECTORY:

Populate the 900 x 900 matrix (x, y & z component of each Cα atom):

Cov(A,B) =       ∑ (Ai – A) * (Bi – B)

positive: both degrees of freedom move in same direction
negative: degrees of freedom move in opposite directions
zero: degrees of freedom are independent of each other

i=1
n

n
A = time-averaged position

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/



The covariance matrix is then diagonalized – the columns of the transformation
matrix become the eigenvectors, each associated with an eigenvalue.

Eigenvectors are then sorted by eigenvalue – the highest eigenvalues
represent the most significant relationship between the dimensions:
these are the principal components.

Eigenvectors represent a correlated displacement of groups of atoms through space
Eigenvalues represent the magnitude of this displacement (nm2)

First 2 eigenvectors account for
60% of total positional fluctuations

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/

Theory (2)



Visualizing PCs (1)
The motion described by an eigenvector can be visualized by projecting
the trajectory onto the eigenvector and taking the 2 extreme projections
and interpolating between them to create an animation.

Projection of atom from a trajectory onto eigenvector

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/



Visualizing PCs (2)

Porcupine plots can be used to display the motion
described by an eigenvector in a static image.

A cone extending from the C-alpha position
shows the direction of the atom along the
eigenvector.

© http://dynamite.biop.ox.ac.uk/dynamite

Covariance plots are a tool to visualize
atoms which have a high correlation 
coefficient from the covariance matrix



Validation
How relevant are the PCs we have calculated and visualised?

Divide simulation into 2 or more parts and compare the eigenvectors
for each part, to measure subspace overlap:

Higher overlap indicates sampling of only a single energy minimum
Lower overlap indicates more complete sampling

Can also measure cosine content of eigenvectors.

Hess et al. showed that the first few PCs of high-dimensional random
diffusion are cosines and that several protein simulation PCs resemble 
these cosines (see Suggested Reading).

So high cosine content may mean that the fluctuations in your simulation
are due to random diffusion:

Typically seen when simulation timescales are too short to reach energy barriers

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/



An alternative method to study dynamics of molecules.

Does not require trajectory, works with single structure.

It is based on the theory of vibration.

Conformational fluctuation is given by a superposition of normal
modes.

Normal Mode Analysis
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Harmonic Approximation

Approximation:

Potential energy => harmonic

© Florence Tama 



The potential energy must be written in the following form,

The form of potential energy for a molecule is usually very 
complicated. However, we can get such a form around a 
minimum-energy point,  because the function can be written as 
follows:

E = E0 +
∂E
∂xi

∑ ∆xi +
1
2!

∂ 2 E
∂xi∂x j

∆∑ xi∆xj +
1
3!

∂ 3E
∂xi∂xj∂xk

∆xi∆xj∆∑ xk + ................

E = E0 +
1
2

Fij∆xi∆x j
i, j
∑

Harmonic Approximation

Taylor series

© Atsushi Matsumoto 



NMA using Molecular Mechanics

Full atomic representation and MM interactions require:

• energy minimization

• diagonalization of the 2nd derivative of the potential energy (Hessian)

• Hessian is 3N x 3N matrix (memory requirements!)



Two-Atomic Molecule

© Atsushi Matsumoto 



Three-Atomic Molecule

© Atsushi Matsumoto 



High frequenciesLow frequencies

Large collective motions Localized motions

Multi-Atom Molecule

© Florence Tama



Example

Adenylate kinase: 
Mode 1 (2.95 cm –1)

Cytochrome c:
Mode 2757 (1519 cm –1)

Collective 
motion

Localized 
motion

© Florence Tama



CLOSE

OPEN OPEN

AFTER DISPLACEMENT 
ALONG NM

Adenylate Kinase => 

large conformational change upon ligand binding

1 normal mode can represent up to 80-90 % of the overall conformational change

Success Story

© Florence Tama



Computational Challenges

NMA requires: Problems for large systems: 

minimization expensive, cumbersome (MM)

diagonalization of the memory requirements

Hessian matrix



Memory-Efficient Diagonalization
DIMB => Diagonalization in mixed basis 

(Perahia & Mouawad, 1995, J. Comp. Chem. 19, 241)

Group theory => Use symmetrical properties of viruses
(Roux & Karplus, 1988, Biophys. J, 53, 297; Simonson & Perahia, 1992, Biophys. J., 61, 410; van Vlijmen & Karplus, 2001, 
J.Chem. Phys, 115, 691)

RTB => Rotation Translation Blocks method gives approximate low-
frequency NM ( Tama et al. 2000, Proteins: Struc. Funct. Genet., 41, 1) 

– block = 1 or several  residues

– rotation + translation of  block => new basis

– expression of Hessian in this new basis

– diagonalization of a matrix  6nB*6nB

© Florence Tama



Cartesian coordinate space
3N-6  variables are necessary
N : number of atoms

Torsion angle space
Bond angles and bond lengths are fixed, and 
only torsion angles are allowed to vary.
Number of variables: ~1/10  

Reducing the Number of Variables

© Atsushi Matsumoto 



Reduced NMA of DNA

© Atsushi Matsumoto 



Definition of Base-Pair Step Parameters

© Atsushi Matsumoto 



Energy Function

© Atsushi Matsumoto 



Parametrization

Statistical
Mining of PDB

Gaussian Distribution
<=>
Harmonic Potential

© Atsushi Matsumoto 



Results (DNA)

Atsushi Matsumoto and Wilma Olson, Biophys. J., 2002, 83:22-41.
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Possibility to reduce level of detail (up to 1 point for 40 residue)

Monique M Tirion (1996) Phys Rev Lett. 77, 1905-1908

Elastic Network Model

Simplified force-field: no MM, already minimized

© Florence Tama



Encode data (in           ) using a finite set            (j=1,…,k) of codebook vectors.

1w

2w

3w

4w

Vector Quantization

Linde, Buzo, & Gray (1980): Gradient descent finds nearest local minimum of E.
Martinetz & Schulten (1993): Global search with topology-representing neural nets.

{ }jw3=ℜd

Delaunay triangulation divides         into k Voronoi polyhedra (“receptive fields”):3ℜ

i
i

mijiE wv∑ −=

voxels)
(atoms, 

2

)(Encoding Distortion Error:



Choice of Cut-off

0
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0.4
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0.08

0.1
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1 codebook vector ≈ 1 residue

10-12 Å cut-off OK

Reducing number of codebook vectors

too sparse connectivity

Inspect the pair-distance distribution of 
codebook vectors and increase cutoff 
beyond first peak. 

214

50

Example: Adenylate kinase, 
214 residues

© Florence Tama



X-ray 
structure

214 codebook 
vectors

50 codebook 
vectors

Open-Close

X-ray

Projection onto atomic normal modes                             
≈ 1 for the first few modes

Low frequency NM are similar to atomic NM

Models can reproduce functional rearrangements even 
at 30Å resolution

Level of Detail not 
Important

© Florence Tama



Application to EM Data
RNA Polymerase, S. Darst et al.

Deposition of 
Density Map



Application to EM Data
RNA Polymerase, S. Darst et al.

Deposition of 
Density Map

Vector
Quantization



Application to EM Data
RNA Polymerase, S. Darst et al.

Deposition of 
Density Map

Vector
Quantization Choice of Cut-off



Application to EM Data
RNA Polymerase, S. Darst et al.

Deposition of 
Density Map

Vector
Quantization Choice of Cut-off NMA



Application to EM Data
RNA Polymerase, S. Darst et al.

Deposition of 
Density Map

Vector
Quantization Choice of Cut-off NMA Apply 

Displacements 



Examples
Ribosome RNA Polymerase







Quick NMA for Atomic Structures
http://dirac.cnrs-orleans.fr/MMTK



• We do not know a priori which is the relevant mode, 
but the first 12 low-frequency modes are probable 
candidates.

• The amplitude of the motion is unknown. 

• NMA requires additional standards for parameterization, 
i.e.  a screening against complementary experimental 
data to select the relevant modes and amplitude. 

• Expert user input / evaluation required

• Not based on first principles of physics (like MD).

What are the Limitations of NMA?



What are the Limitations of MD?

Energy Surface →
Exploration by Simulation..

© Jeremy Smith

sampling problem



Solution: Enhanced Sampling MD
drive MD by collective coordinates (PCA or NMA) 

First approach with PCA:

“Essential Molecular Dynamics”

Amadei, Linsen, Berendsen
“Essential Dynamics of Proteins” – Proteins (1993), 17:412-425

Use the PCs from free MD to drive a protein from one conformation to another
Used by Daidone et al. to study Cytochrome c folding with MD
Only 106 degrees of freedom out of a total 3000 were used to bias the simulation



Amplified Collective Motion (ACM)
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© Zhiyong Zhang

Zhang et al., Biophys J. (2003) 84:3583-93. 



T=358K

T=274K

Folding/Unfolding of S-Peptide Analog

ACM 30-ns 3-modes @ 358K + other-DOF @ 274K
Control simulation 30-ns all-DOF 274K
implicit water model: Generalized Born

Zhang et al., Biophys J. (2003) 84:3583-93. 

© Zhiyong Zhang



Folding/Unfolding of S-Peptide Analog

© Zhiyong Zhang



Domain Motions in Bacteriophage T4 
Lysozyme (T4L)

Closure mode
(178L vs 152L)

Twist mode
(174L vs 150L)

© Zhiyong Zhang
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Myosin: ACM vs. MD

MD simulation

ACM simulation

© Zhiyong Zhang



• In NMA, we do not know a priori which is a functionally relevant mode, 
the first 12 low-frequency modes are probable candidates.

• In PCA, the global modes don’t converge due to time limitations of the  
molecular dynamics simulation (sampling problem): 

Balsera et al. argue that PCA is not useful for identifying long-timescale
protein motions and for reduced-dimension simulations.

Balsera, Wriggers, Oono, Schulten
“Principal Component Analysis and Long Time Protein Dynamics”
J. Phys. Chem. 100:2567-2572 (1996)

The motions identified are only applicable to the timescale analysed.

Global Collective Coordinates: 
What are the Limitations?



• Both PCA and NMA break the symmetry of structures due to forced 
orthogonalization:

Global Collective Coordinates: 
What are the Limitations?



Solution: Local Feature Analysis

n=15

n=3

© Zhiyong Zhang



Local Feature Analysis (LFA)

Is LFA applicable to protein dynamics? 

From: Penev PS, Atick JJ: Local Feature Analysis: A General Statistical Theory for 
Object Representation. Network: computation in neural systems 1996, 7:477-500.

Goal: an alternative statistical theory that describe dynamic features locally and 
that does not suffer from the sampling and orthogonalization problems. 

Unlike the global eigenmodes, LFA describes objects in terms of statistically 
derived local features and their positions. 



Local Feature Analysis (LFA)
- Theory (I)

Residual correlation: 

Covariance matrix from the MD simulation: 

PCA: PCA output:

General form for the LFA kernel: 

LFA output:



Output Correlation

n=15

n=3



Local Feature Analysis (LFA)
- Theory (II)

Average reconstruction mean square error: 

We replaced the n global PCA modes with the full 3N LFA output functions. 
Therefore an additional dimensionality reduction step is required in the LFA 
output space. We approximate the entire 3N outputs with only a small subset 
of them that correspond to the strongest local features by taking advantage of 
the fact that neighboring outputs are highly correlated.

Reconstruct the outputs: 

Optimal linear prediction coefficients:



Sparsification

(a) The first 4 PCA 
modes were used to do 
LFA, n=4; (b) n=8, (c) 
n=12, and (d) n=15. (e) 
Root-mean-square 
fluctuations of C_alpha
atoms in T4L. 



Local Feature Analysis of Myosin

Converter Domain/Lever Arm

Actin Binding Domain

Upper 50K Domain 

ATP Binding/Hydrolysis Site

Essential Light Chain

Regulatory Light Chain

Twelve seed atoms Twelve local dynamic domains



Convergence Properties
Overlap between 15 modes from first and second half of 10ns trajectory
(T4 lysozyme, standard MD)

PCA LFA



The intrinsic dynamics of local domains is more extensively 
sampled than that of globally coherent PCA modes. 

LFA autocorrelationPCA autocorrelation

Convergence Properties



Outlook: Predicting Functional Motion

• It appears that PCA and NMA over-estimate the coherence of global
motion across large biopolymers and create artifacts due to 
orthogonalization.

• LFA captures local dynamic features reproducibly and is less 
sensitive to  the MD sampling problem.

• We perform a statistical analysis that emphasizes dynamic domains 
that are moving independently from each other.

• LFA paper just appeared in Proteins (Zhang & Wriggers, 2006)



Resources and Further Reading

WWW: 
http://www.sosmath.com/matrix/matrix.html
http://dirac.cnrs-orleans.fr/MMTK
http://dynamite.biop.ox.ac.uk/dynamite

Papers:
L. I. Smith “A tutorial on Principal Component Analysis” (2002) e.g. at

http://kybele.psych.cornell.edu/%7Eedelman/Psych-465-Spring-2003/PCA-tutorial.pdf
Monique M Tirion (1996) Phys Rev Lett. 77:1905-1908
Zhang et al., Biophys J. (2003) 84:3583-93. 
Chacón et al. J. Mol. Biol., 2003, 326: 485-492. 
Hess, Phys. Rev. E 62:8438-8448 (2000)
Amadei, Linsen, Berendsen, Proteins (1993), 17:412-425
Balsera, Wriggers, Oono, Schulten J. Phys. Chem. 100:2567-2572 (1996)
Zhang & Wriggers, Proteins (2006), 64:391-403

Text Book:
Schlick, Chapter 8.2
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