
Visualization of Biomolecular
Structures

For students of HI 6327 “Biomolecular Modeling”

Willy Wriggers, Ph.D.
School of Health Information Sciences

http://biomachina.org/courses/modeling/03.html

T H E U N I V E R S I T Y of T E X A S

H E A L T H S C I E N C E C E N T E R A T H O U S T O N

S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S

Molecular Graphics Perspectives of
Protein Structure and Function

© 2003, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and
Technology, University of Illinois at Urbana-Champaign

Large-Scale Structure Visualization

• Large structures:
300,000 atoms and up

• Complex
representations

• Long trajectories:
thousands of
timesteps

• Volumetric data

• Molecular Dynamics:
5 ns simulation of
100K atoms produces
a 12GB trajectory

VMD Highlights

• > 30,000 registered Users

• Platforms:

– Unix (16 builds)

– Windows

– MacOS X

• Display of large biomolecules and simulation trajectories

• Sequence browsing and structure highlighting

• User-extensible scripting interfaces for analysis and
customization

Loading a Molecule

Setting Graphics Representations

Change Rendering Style

Mix Representations

Customizing Coloring

Use VMD scripting features to color beta strands
separately;

show hydrogen bonds to monitor the mechanical
stability of ubiquitin

Scripting
Tcl and Python supported

Introduction to Tcl Syntax

For a scripting language, Tcl has a simple syntax:

cmd arg arg arg

A Tcl command is formed by words separated by
white space. The first word is the name of the
command, and the remaining words are arguments
to the command.

Introduction to Tcl Syntax

$foo

The dollar sign ($) substitutes the value of a variable. In
this example, the variable name is foo.

Introduction to Tcl Syntax

[clock seconds]

Square brackets execute a nested command. For
example, if you want to pass the result of one
command as the argument to another, you use this
syntax. In this example, the nested command is
clock seconds, which gives the current time in
seconds.

Introduction to Tcl Syntax

"some stuff"

Double quotation marks group words as a single
argument to a command. Dollar signs and
square brackets are interpreted inside double
quotation marks.

Introduction to Tcl Syntax

{some stuff}

Curly braces also group words into a single argument.
In this case, however, elements within the braces are
not interpreted.

Introduction to Tcl Syntax

\

The backslash (\) is used to quote special
characters. For example, \n generates a
newline. The backslash also is used to "turn
off" the special meanings of the dollar sign,
quotation marks, square brackets, and curly
braces.

Introduction to Tcl Syntax

Below is a Tcl command that prints the current time. It uses three Tcl
commands: set, clock, and puts. The set command assigns the variable. The
clock command manipulates time values. The puts command prints the values.

set timesec [clock seconds]
puts "The time is [clock format $timesec]"

Note that you do not use $ when assigning to a variable. Only when you
want the value do you use $. The timesec variable isn't needed in the
previous example. You could print the current time with one command:

puts "The time is [clock format [clock seconds]]"

Introduction to Tcl Syntax
The Tcl syntax is used to guide the Tcl parser through three steps:

1. Argument grouping. Tcl needs to determine how to organize the
arguments to the commands. In the simplest case, white space separates
arguments. As stated earlier, the quotation marks and braces syntax is
used to group multiple words into one argument. In the previous example,
double quotation marks are used to group a single argument to the puts
command.

2. Result substitution. After the arguments are grouped, Tcl performs
string substitutions. Put simply, it replaces $foo with the value of the
variable foo, and it replaces bracketed commands with their result. That
substitutions are done after grouping is crucial. This sequence ensures
that unusual values do not complicate the structure of commands.

3. Command dispatch. After substitution, Tcl uses the command name as a
key into a dispatch table. It calls the C procedure identified in the table,
and the C procedure implements the command. You also can write
command procedures in Tcl. There are simple conventions about
argument passing and handling errors.

Introduction to Tcl Syntax
Here is another example:

set i 0
while {$i < 10} {

puts "$i squared = [expr {$i*$i}]"
incr i

}

Here, curly braces are used to group arguments without doing any
substitutions. The Tcl parser knows nothing special about the while command.
It treats it like any other command. It is the implementation of the while
command knows that the first argument is an expression, and the second
argument is more Tcl commands. The braces group two arguments: the
boolean expression that controls the loop and the commands in the loop body.
We also see two math expressions: the boolean comparison and
multiplication. The while command automatically evaluates its first argument
as an expression. In other cases you must explicitly use the expr command to
perform math evaluation.

Introduction to Tcl Syntax

It is very easy to write command procedures. They can do everything from
accessing databases to creating graphical user interfaces. Tcl, the language,
doesn't really know what the commands do. It just groups arguments,
substitutes results, and dispatches commands.

One Last Example:
proc fac {x} {

if {$x < 0} {
error "Invalid argument $x: must be pos."

} elseif {$x <= 1} {
return 1

} else {
return [expr {$x * [fac [expr {$x-1}]]}]

}
}

Tcl Resources

WWW:
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

Books:
Welch: Practical Programming in Tcl and Tk (Prentice Hall)
Ousterhout: Tcl and the Tk Toolkit (Addison Wesley)

Any Questions?

…next : VMD Tutorial

