

THE UNIVERSITY of TEXAS

HEALTH SCIENCE CENTER AT HOUSTON SCHOOL of HEALTH INFORMATION SCIENCES

Introduction to Biomolecular Structure

For students of HI 6327 "Biomolecular Modeling"

Willy Wriggers, Ph.D. School of Health Information Sciences

http://biomachina.org/courses/modeling/02.html

Early Life on Earth

Time (Myr ago)	Event
4600	Formation of the approximately homogeneous solid Earth by planetesimal accretion
4300	Melting of the Earth due to radioactive and gravitational heating which leads to its differentiated interior structure as well as outgassing of molecules such as water, methane, ammonia, hydrogen, nitrogen, and carbon dioxide
4000	Bombardment of the Earth by planetesimals stops
3800	The Earth's crust solidifiesformation of the oldest rocks found on Earth. Condensation of atmospheric water into oceans
3500- 2800	Prokaryotic cell organisms develop
3500- 2800	Beginning of photosynthesis by blue-green algae which releases oxygen molecules into the atmosphere

Stromatolites are layered mounds, columns, and sheets found in the rock. They were originally formed by the growth of layer upon layer of *cyanobacteria*, a single-celled photosynthesizing microbe growing on a sea floor. Photo by Marjory Martin, Deakin Univ, Australia.

Early Life on Earth

Time (Myr ago)	Event
1500- 600	Eukaryotic cell organisms develop, rise of multicellular organisms
430	Waxy coated algae begin to live on land
420	Millipedes have evolvedfirst land animals
375	The Appalachian mountains are formed via a plate tectonic collision between North America, Africa, and Europe
200	Appearance of mammals
65	K-T (Kreide-Tertiär = Cretaceous-Tertiary) Boundaryextinction of the dinosaurs and beginning of the reign of mammals
20-12	The chimpanzee and hominid lines evolve
0.05-0	Homo sapiens sapiens exist

Lily Parenchyma Cell (cross-section) (TEM x7,210). Note the large nucleus and nucleolus in the center of the cell, mitochondria and plastids in the cytoplasm. Photo by Dennis Kunkel at www.DennisKunkel.com

The First Enzymes: RNA

The conformation of an RNA molecule: Nucleotide pairing and 3D structure. © Alberts et al. The Cell.

Location of the protein components (gold) in the ribosome, that consists mainly of RNA (grey). © Ban et al. Science.

Protein Synthesis in the Ribosomal Translation Cycle

- 1. mRNA synthesis with RNA polymerase
- 2. aa-tRNA (1 anticodon 3b) acts as adapter
- 3. anticodon matches codon on mRNA
- 4. aa binds to polypeptide chain
- 5. release of tRNA
- 6. new tRNA binds

© Joachim Frank, 1998

EM Map of the Ribosome at 15Å Resolution

The Amino Acids

- Proteins are polymers of the 20 naturally occurring amino acids
- A.a. are abbreviated by 3 and 1 letter codes (learn these!)
- A.a. can be grouped based on electrostatic and size of side chain R

3D Structure

Side Chain Protonation and pH

- pH measures the concentration of H+ ions in solution.
- H+ from dissociation of an acid when this is dissolved in water.

The pH value is the negative logarithm of the H+ concentration in mol/L: pH = -log10[H+]The [H+] in pure water is 10^-7; therefore the neutral pH of pure water is: pH = 7

рКа

"dissociation point"

pH<pKa: H+ on

pH>pKa: H+ off The ionization equilibrium of a weak acid is given by

 $HA \leftrightarrow H^+ + A^-$

The equilibrium constant K for this weak acid is

acid-base equilibrium

$$K = \frac{\left[H^{+}\right]A^{-}}{\left[HA\right]}$$

The $p K_a$ of an acid is defined as

$$pK_a = -\log K = \log \frac{1}{K}$$

By looking again at the 2nd equation, it can easily be shown that $pK_a = pH$ when the acid is half dissociated, $[A^T] = [HA]$

The relationship between pH and pKa is very important to understand , because this relationship describes how chemicals change states in biological systems as the pH varies. For example, an amino group has two possible states representable by A' and HA:

$$\mathbf{R} = - \mathbf{N}_{\mathbf{H}}^{\mathbf{H}} + \mathbf{H}^{\mathbf{+}} \longleftrightarrow \mathbf{R} = - \mathbf{N}_{\mathbf{H}}^{\mathbf{H}} - \mathbf{H}$$

It is important to know which state of the equilibrium is favored at different pH 's. This relationship between pH and pKa is described by the Henderson - Hasselbalch Equation :

$$pH = pKa + log \frac{\left[A^{T}\right]}{\left[HA\right]}$$

© MIT Biology Hypertextbook

This equation is quite useful . With it you can now predict what state a molecule will be in at a given pH, among other things.

© MIT Biology Hypertextbook

Polypeptides

© Kimball's Biology Pages

Planarity of the Peptide Bond

Ή

O

Proline

 $\mathbf{C}_{\mathsf{alpha}}$

0

 \mathbf{O}

omega

In all a.a. (except proline) steric hindrance favors the trans configuration ($omega = 180^{\circ}$), in proline sometimes omega =0.

© Birkbeck College

Peptide Bond in 3D

These angles are approximate and should be used in HW 1

N-term

Secondary Structure: α-Helix

- α -helix (R):
- repeats every 5.4Å,
- 3.6 a.a. per turn
- frequently terminated by 3(10) helix

Secondary Structure: β -Sheet

© Birkbeck College

Secondary Structure: β -Sheet

Can you identify the amino- and carboxy- termini of the strands?

[©] Birkbeck College

The Ramachandran Plot

© Birkbeck College

Glycine Ramachandran Plot

Reverse Turns

- abundant in globular proteins
- occur on surface of molecule
- possibly nucleation center for folding

© Birkbeck College

β –Hairpins

© Birkbeck College

Tertiary and Quaternary Structure

Bases

Convention: sequences written $5' \rightarrow 3'$

© Alberts et al., The Cell

Biomolecules in the Cell Cytoplasm

RNAs, ribosomes, and proteins

© David Goodsell, Trends Biochem. Sci, 1991

Cell Structure

Prokaryotic cell

Eukaryotic cell

Purves et al., Life: The Science of Biology

http://www.biosci.uga.edu/almanac/bio_103/notes/may_15.html

Resources and Reading Assignment

WWW:

http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookTOC.html http://web.mit.edu/esgbio/www http://users.rcn.com/jkimball.ma.ultranet/BiologyPages

Textbooks: Schlick, Chapters 1, 3, 4, and 5 Bourne & Weissig, Chapters 2 and 3

Handouts: P.G. Debrunner, 1993, Proteins and Nucleic Acids