
Lecture 2 - The Fourier Domain &
Digital Filters

2.1 The Fourier transform

Consider again the 1-D case of a signalf(x), the FT is defined as

F (u) =

∫ +∞

−∞
f(x) exp[−i2πux]dx

and the inverse as

f(x) =

∫ ∞

−∞
F (u)ei2πuxdu

which form aFourier transform pair. We note that the FT is, in general, a complex function
of the formF (u) = R(u) + iI(u). We call|F (u)| theFourier spectrumof f(x) andφ(u) =
tan−1[I(u)/R(u)] thephase spectrum.

2.1.1 2-D Fourier transform

There is no inherent change in theory for the 2-dimensional case, wheref(x, y) exists, so
the FT,F (u, v) is given as

F (u, v) =

∫ ∫ +∞

−∞
f(x, y) exp[−i2π(ux + vy)]dxdy

and the inverse as

f(x, y) =

∫ ∫ +∞

−∞
F (u, v) exp[i2π(ux + vy)]dudv

We note that the above areseparable

2.1.2 Some basic theorems

Here are some basic (and useful) theorems related to the FT. They are shown for a 1-D
system, for ease of reading and notation, and directly translate into higher dimensions as
above.
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• Similarity theorem: if f(x) → F (u) thenf(ax) → 1
|a|F (u/a)

• Addition theorem: if f(x), g(x) → F (u), G(u) thenaf(x)+bg(x) → aF (u)+bG(u)

• Shift or twist theorem: if f(x) → F (u) thenf(x− a) → exp[−i2πua]F (u)

• Convolution theorem: if

f(x) ∗ g(x) =

∫
f(τ)g(x− τ)dτ

thenFT [f(x) ∗ g(x)] = F (u)G(u). Note that this is of great use in filtering

• Power theorem: ∫
|f(x)|2dx =

∫
|F (u)|2du

i.e. a statement about conservation of energy.

• Derivative theorem: if f(x) → F (u) thenf ′(x) = d/dx[f(x)] → iuF (u)

2.1.3 The discrete FT (DFT)

We sample the continuous (start with 1-D) function,f(x), atM points spaced∆x apart. We
now describe the function as

f(x) = f(xo + x∆x)

wherex now describes anindex, with this transformation,u the Fourier varable paired tox
is discretised intoM points. We thus obtain :

F (u) =
1

M

M−1∑
x=0

f(x) exp[−i2πux/M ]

and

f(x) =
M−1∑
u=0

F (u) exp[i2πux/M ]

and, for 2-D systems

F (u, v) =
1

M

1

N

M−1∑
x=0

N−1∑
y=0

f(x, y) exp[−i2π(ux/M + vy/N)]

and

f(x, y) =
M−1∑
u=0

N−1∑
v=0

F (u, v) exp[i2π(ux/M + vy/N)]

if y is sampled evenly atN sample points.
The sampling in the space domain,∆x, ∆y corresponds to a sampling in the ‘frequency’

domain of

∆u =
1

M∆x

∆v =
1

M∆y
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2.1.4 Some useful results using the DFT

• The total width of the samples in thex, y directions determines the lowest spatial
frequency we can resolve,umin = 1/(M∆x)

• The sample interval,∆x, ∆y, dictates the highest spatial frequency we can resolve,
umax = 1/(2∆x)

• The number of samples,M,N , dictates the number of spatial frequency ‘bins’ that can
be resolved.

• Addition & linearity : as with continuous functions

• Shift theorem: : if f(x) → F (u) thenf(x− a) → exp[−i2πua/M ]F (u), hence

f(x, y) exp[i(uox + voy)/M ] → F (u− uo, v − vo)

and
f(x− xo, y − yo) → F (u, v) exp[−i2π(uxo + vyo)/M ]

if we let uo = vo = M/2 then we can shift the frequency space to the centre of the
frequency square

f(x, y)(−1)x+y → F (u−M/2, v −M/2)

• Discrete convolution:

f(x) ∗ g(x) =
M−1∑
m=0

f(m)g(x−m)

and
DFT [f(x) ∗ g(x)] = MF (u)G(u)

• Power theorem:
M−1∑
x=0

|f(x)|2 = M

M−1∑
u=0

|F (u)|2

• Periodicity:

F (u, v) = F (u + M, v) = F (u, v + M) = F (u + M, v + M)

Note that this leads us to deduce thealiasing theorem

• Rotation:
f(r, θ + θo) → F (ω, φ + θo)
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• Average value: If we define the average value of the 2-D function as

f(x, y) =
1

M2

M−1∑
x=0

M−1∑
y=0

f(x, y)

then

f(x, y) =
1

M
F (0, 0)

• Laplacian: The Laplacian of a 2-D variable is defined as

∇2f(x, y) =
∂2f

∂x2
+

∂2f

∂y2

The DFT of the above is hence

−(2π)2(u2 + v2)F (u, v)

Trick : Plots of|F (u, v)| often decay very rapidly from a central peak, so it is good to
display on a log scale. Often the transform,F ′(u, v) = log[1 + |F (u, v)|] is used.
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Figure 2.1:Image (a), Fourier spectrum (b) and shifted Fourier spectrum (c).
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Figure 2.2:Some 2-D functions and their resultant DFTs
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Figure 2.3:Rotation in FT space.

Figure 2.4:2-D Convolution.
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2.2 Other transforms

The FT represents a specific case in a more general transform theory. In the FT the image is
decomposed into a series of harmonic functions (sines and cosines). These have the property
of beingorthogonalfunctions and form acomplete basisset. They are not the only such
functions, however.

• FT kernel basis

• Walsh

• Hadamard

• Discrete cosine transform (DCT)

• Wavelets - localised functions.

We concentrate later in the course on the use of the DCT as this is the most widely used
of the above and forms the basis of JPEG compression. We also look at wavelets as these
form the basis of the JPEG-2000 compression scheme.

2.3 Digital filtering

2.3.1 The sampling process

This is performed by ananalogue to digital converter(ADC) in which the continuous func-
tion f(x) is replaced by a “discrete function”f [k], which is defined only atx = kT , with
k = 0, 1, 2. We thence only need consider the digitised sample setf [k] and the sample inter-
val T . A simple generalisation allows for a sampled set over the 2-D plane, with samples at
u∆M, v∆N so thatu, v indexes the image pixels.

Aliasing

Considerf(x) = cos(π
2

t
T
) (one cycle every 4 samples) and alsof(t) = cos(3π

2
x
T
) (3 cycles

every 4 samples) as shown in the Figure. Note that the resultant samples are the same. This
result is referred to as aliasing.
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2.4 Introduction to the principles of digital filtering

We can see that the numerical processing is at the heart of the digital filtering process. How
can the arithmetic manipulation of a set of numbers produce a “filtered” version of that set?
Consider the noisy signal of figure 2.5, together with its sampled version:

-2    -1    0      1      2

Figure 2.5:Noisy data.

One way to (e.g) reduce the noise might be to try andsmooththe data. For example, we
could try a polynomial fit using a least-squares criterion. If we choose, say, to fit a parabola
to every group of 5 points in the sequence, then, for every point, we will make a parabolic
approximation to that point using the value of the sample at that point together with the
values of the 4 nearest samples (this forms aparabolic filter), as in Fig. 2.6

p[k] = s0 + ks1 + k2s2

wherep[k] = value of parabola at each of the 5 possible values ofk = {−2,−1, 0, 1, 2} and
s0, s1, s2 are the variables used to fit each of the parabolae to 5 input data points.
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parabolic fit

centre point, k=0

Figure 2.6:Parabolic fit.

We obtain a fit by finding a parabola (coefficientss0, s1 ands2) which best approximates
the 5 data points as measured by the least-squares error E:

E(s0, s1, s2) =
2∑

k=−2

(x[k]− [s0 + ks1 + k2s2])
2

Minimizing the least-squares error gives:

∂E

∂s0

= 0,
∂E

∂s1

= 0, and
∂E

∂s2

= 0

and thus:

5s0 + 10s2 =
k=2∑

k=−2

x[k]

10s1 =
k=2∑

k=−2

kx[k]

10s0 + 34s2 =
k=2∑

k=−2

k2x[k]

which therefore gives:

s0 =
1

35
(−3x[−2] + 12x[−1] + 17x[0] + 12x[1]− 3x[2])

s1 =
1

10
(−2x[−2]− x[−1] + x[1] + 2x[2])

s2 =
1

14
(2x[−2]− x[−1]− 2x[0]− x[1] + 2x[2])

The centre point of the parabola is given by:

p[k] |k=0= s0 + ks1 + k2s2 |k=0= s0
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Thus, the parabola coefficients0 given above is the output sequence number calculated
from a set of 5 input sequences points. The output sequence so obtained is similar to the
input sequence, but with less noise (i.e. low-pass filtered) because the parabolic filtering
provides a smoothed approximation to each set of five data points in the sequence. Fig. 2.7
shows this filtering effect. The magnitude response (which we will re-consider later) for the
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Figure 2.7:Noisy data (thin line) and 5-point parabolic filtered (thick line).

5-point parabolic filter is shown below in Fig. 2.8.
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Figure 2.8:Frequency response of 5-point parabolic filter.

The filter which has just been described is an example of anon- recursivedigital filter,
which are defined by the following relationship (known as adifference equation):

r[k] =
N∑

i=0

aif [k − i]

where theai coefficients determine the filter characteristics. The difference equation for the
5-point smoothing filter, therefore, is:

r[k] =
1

35
(−3f [k + 2] + 12f [k + 1] + 17f [k] + 12f [k − 1]− 3f [k − 2])

This is anon-causalfilter since a given output valuer[k] depends not only on previous inputs,
but also on the current inputf [k], the inputf [k + 1] and the inputf [k + 2]. The problem is
solved by delaying the calculation of the output valuef [k] (the centre point of the parabola)
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until all the 5 input values have been sampled (i.e. a delay of2T whereT = sampling period),
ie:

r[k] =
1

35
(−3f [k] + 12f [k − 1] + 17f [k − 2] + 12f [k − 3]− 3f [k − 4])

It is of importance to note that the equationr[k] =
∑

aif [k − i] represents adiscrete
convolutionof the input data with the filter coefficients; hence these coefficients constitute
the impulse responseof the filter.

Proof:

Let f [k] = 0, except atk = 0, wheref [0] = 1. Thenr[k] =
∑

i aif [k − i] = akx[0]
(all terms zero except wheni = k). This is equal toak sincef [0] = 1. Thereforer[0] = a0;
r[1] = a1; etc . . .. As there is a finite number ofa’s, the impulse response is finite. For this
reason, non-recursive filters are also calledFinite-Impulse Response(FIR) filters.

As we will see, we may also formulate a digital filter as a recursive filter; in which, the
outputr[k] is also a function of previous outputs:

r[k] =
N∑

i=0

aif [k − i] +
M∑
i=1

bir[k − i]

Before we can describe methods for the design of both types of filter, we need to review
the concept of thez-transform.

2.5 Thez-transform

The z-transform is important in digital filtering because it describes the sampling process
and plays a role in the digital domain similar to that of the Laplace transform in analogue
filtering.

The Laplace transform of a unit impulse occurring at timex = kT is e−kTs. Consider
the discrete functionf [k] to be a succession of impulses, for example of areaf(0) occurring
at x = 0, f(1) occurring atx = T , etc . . .. The Laplace transform of the whole sequence
would be:

Fd(s) = f(0) + f(1)e−Ts + f(2)e−2Ts + . . . + f [k]e−kTs

The suffixd denotes the transform of thediscretesequence, not of the continuousf(t).
Let us replaceeTs by a new variablez, and renameFd(s) asF (z):

F (z) = f(0) + f(1)z−1 + f(2)z−2 + . . . f [k]z−k

For many functions, the infinite series can be represented in “closed form”, in general as
the ratio of two polynomials inz−1.
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2.5.1 The Pulse Transfer Function

This is the name for (z-transform of output)/(z-transform of input).
Let the impulse response, for example of an FIR filter, bea0 at t = 0, a1 atx = T , . . . ai

atx = nT with n = 0 to N .
Let G(z) be thez-transform of this sequence:

G(z) = a0 + a1z
−1 + a2z

−2 + . . . + aiz
−i + . . . aNz−N

Let X(z) be an input:

F (z) = f [0] + f [1]z−1 + f [2]z−2 + . . . + f [k]z−k + . . .

The productG(z)F (z) is:

G(z)F (z) = (a0 + a1z
−1 + . . . anz−n + . . . aNz−N)(f [0] + f [1]z−1 + . . . f [k]z−k)

in which the coefficient ofz−k is:

a0f [k] + a1f [k − 1] + . . . anf [k − n] + . . . aNf [k −N ]

This is nothing else than the value of the output sample atx = kT . Hence the whole
sequence is thez-transform of the output, sayR(z), whereR(z) = G(z)F (z). Hence the
pulse transfer function,G(z), is thez-transform of the impulse response.

For non-recursive filters:

G(z) =
N∑

n=0

aiz
−i

For recursive filters:

R(z) =
N∑

n=0

aiz
−iF (z) +

M∑
i=m

biz
−iR(z)

G(z) =
R(z)

F (z)
=

∑
n anz−n

1−∑
m bmz−m

2.5.2 z-plane pole-zero plot

Let z = esT , whereT = sampling period. Sinces = σ + i2πu, we have:

z = eσT ei2πuT

If σ = 0, then| z |= 1 andz = ei2πuT = cos 2πuT + i sin 2πuT , i.e. the equation of a
circle of unit radius (theunit circle) in thez-plane.

Thus, the imaginary axis in thes-plane (σ = 0) maps onto the unit circle in thez-plane
and the left half of thes-plane (σ < 0) onto theinterior of the unit circle.

We know that all the poles ofG(s) must be in the left half of thes-plane for a continuous
filter to be stable. We can therefore state the equivalent rule for stability in thez-plane:

For stability all poles in the z-plane must be inside the unit circle.
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2.6 Frequency response of a digital filter

This can be obtained by evaluating the (pulse) transfer function on the unit circle ( i.e.
z = e2πiuT ).

Proof
Consider the general filter

r[k] =
∞∑

n=0

anf [k − i]

NB: A recursive type can always be expressed as an infinite sum by dividing out:

eg., for G(z) =
a0

1− b1z−1
, we have r[k] =

∞∑
n=0

a0.b
n
1f [k − n]

Let input before sampling becos(2πut + θ), sampled att = 0, T, . . . , kT . Thereforef [k] =
cos(2πukT + θ) = 1

2
{ei(2πukT+θ) + e−i(2πukT+θ)}

ie.r[k] =
1

2

∞∑
n=0

ane
i{2πu[k−n]T+θ} +

1

2

∞∑
n=0

ane
−i2π{u[k−n]T+θ}

=
1

2
ei(2πukT+θ)

∞∑
n=0

ane−i2πunT +
1

2
e−i2π(ukT+θ)

∞∑
n=0

ane
i2πunT

Now
∞∑

n=0

ane−i2πunT =
∞∑

n=0

an(ei2πuT )−n

But G(z) for this filter is
∞∑

n=0

anz−n

and so
∞∑

n=0

ane
−i2πunT = G(z)z = ei2πuT

Let G(z)z = ei2πuT = Aeiφ.
Then ∞∑

n=0

ane
i2πunT = Ae−iφ (complex conjugate)

Hencer[k] = 1
2
ei(2πukT+θ)Aeiφ + 1

2
e−i(2πukT+θ)Ae−iφ

or r[k] = A cos(2πukT + θ + φ) whenf [k] = cos(2πukT + θ)

ThusA andφ represent the gain and phase of the frequency response. i.e. the frequency
response (as a complex quantity) is

G(z)|z=ei2πuT

21


