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Biology



What are Neural Networks?

Models of the brain and nervous system

Highly parallel

= Process information much more like the brain than a serial computer

Learning

Very simple principles

Very complex behaviours

Applications
= As powerful problem solvers

= As biological models
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Neuro-
Physiological
Background

e 10 billion neurons in
human cortex

e 60 trillion synapses

* |n first two years from birth
~1 million synapses / sec.
formed
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Organizing Principle

A Divergence B Convergence




Various Types of Neurons
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Neuron Models



Modeling the Neuron

bias

f : activation function

—

output

y:

h : combine w; & x;
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Artificial Neuron Anatomy
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Common Activation Functions

» Sigmoidal Function:

y = f(thO-I-I-ZWi - X ;'OJZIV
l+e”

=1

« Radial Function, e.g.. Gaussian:

y= fEh:Z(Xi _Wi)2 : O':Wo]zzl e 2o
i-1

e Linear Function

y=WO-1+Zn:Wi-Xi

=1
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Supervised Learning



Artificial Neural Networks

* ANNSs incorporate the two fundamental components of
biological neural nets:

1. Neurones (nodes)

2. Synapses (weights)

J A 4
Input ) "&.‘)}i ..

Output
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“Pidgeon” ANNSs

* Pigeons as art experts (Watanabe et al. 1995)

* Experiment:
- Pigeon in Skinner box
- Present paintings of two different artists (e.g. Chagall / Van Gogh)
- Reward for pecking when presented a particular artist (e.g. Van Gogh)
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Traimning Set:
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Predictive Power:

Pigeons were able to discriminate between Van Gogh and Chagall with
95% accuracy (when presented with pictures they had been trained on)

Discrimination still 85% successful for previously unseen paintings of
the artists.

Pigeons do not simply memorise the pictures
They can extract and recognise patterns (the ‘style’)

They generalise from the already seen to make predictions

This is what neural networks (biological and artificial) are good at
(unlike conventional computer)
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Real ANN Applications

Recognition of hand-written letters

Predicting on-line the quality of welding spots

Identifying relevant documents in corpus

Visualizing high-dimensional space

Tracking on-line the position of robot arms

e ...ctC
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ANN Design

1. Geta large amount of data: inputs and outputs
2. Analyze data on the PC

Relevant inputs ?
Linear correlations (ANN necessary) ?
Transform and scale variables
Other useful preprocessing ?
Divide in 3 data sets:
Training set
Test set
Validation set
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ANN Design

3. Set the ANN architecture: What type of ANN ?
e Number of inputs, outputs ?
e Number of hidden layers
e Number of neurons
e Learning schema « details »

4. Tune/optimize internal parameters by presenting training data set to ANN

5. Validate on test / validation dataset
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Main Types of ANN

Supervised Learning:

= Feed-forward ANN
- Multi-Layer Perceptron (with sigmoid hidden neurons)

= Recurrent Networks
- Neurons are connected to self and others
- Time delay of signal transfer
- Multidirectional information flow

Unsupervised Learning:

= Self-organizing ANN
- Kohonen Maps
- Vector Quantization
- Neural Gas



Feed-Forward ANN

Input Hidden Output

* Information flow is unidirectional
» Data is presented to Input layer
» Passed on to Hidden Layer

» Passed on to Output layer

* Information is distributed

* Information processing is parallel

Internal representation (interpretation) of data

Information

—
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Supervised Learning

Typically:
backprop.

of errors out s out

error="Xx

Training set: ' yout
{(uxin' uTou’r); —> )@
1<u<P}

desired output
(supervisor)

,UtOUt
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Important Properties of FFN

* Assume
= g(x): bounded and sufficiently regular fct.
= FFN with 1 hidden layer of finite N neurons

(Transfer function is identical for every neurons)

« =>FFNis an Universal Approximator of g(x)
Theorem by Cybenko et al. in 1989

In the sense of uniform approximation
For arbitrary precision ¢
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Important Properties of FFN

. Assume
. FFN as before

(1 hidden layer of finite N neurons, non linear transfer function)

= Approximation precision &

. =>#{w.} ~# inputs
Theorem by Barron in 1993

ANN is more parsimonious in #{w.} than a linear approximator

[linear approximator: #{w,} ~ exp(# inputs) |
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Roughness of Output

* Outputs depends of the whole set of
weighted links {w;}

Projection to resutt[3] = Ka ]

%
» Example: output unit versus input 1 and 2,
input 2 for a 2*10*1 ANN with random
weights
1
§
1
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Feeding Data Through the FNN

Input Hidden Output

(1 x 0.25) + (0.5 x (-1.5)) = 0.25 + (-0.75) = - 0.5

]' =0.3775
1+ e

Squashing:
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Feeding Data Through the FNN

Data 1s presented to the network in the form of activations in the input layer

Examples
= Pixel intensity (for pictures)
= Molecule concentrations (for artificial nose)

= Share prices (for stock market prediction)

Data usually requires preprocessing

= Analogous to senses in biology

How to represent more abstract data, e.g. a name?
= Choose a pattern, e.g.
- 0-0-1 for “Chris”
- 0-1-0 for “Becky”
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Training the Network

How do we adjust the weights?
» Backpropagation

= Requires training set (input / output pairs)
= Starts with small random weights

= Error is used to adjust weights (supervised learning)
—> Gradient descent on error landscape
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Backpropagation

Wallace

Wallace - Darwin (calculate erron)

adjust weights

Wallace

adjust weights

Darwin
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Backpropagation
« Advantages
= It works!

= Relatively fast

* Downsides
= Requires a training set
= Can be slow to converge

= Probably not biologically realistic

* Alternatives to Backpropagation
= Hebbian learning
- Not successful in feed-forward nets
= Reinforcement learning
- Only limited success in FFN
= Artificial evolution

- More general, but can be even slower than backprop
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Applications of FFN

Pattern recognition

- Character recognition

- Face Recognition

Sonar mine/rock recognition (Gorman & Sejnowksi, 1988)
Navigation of a car (pomerleau, 1989)

Stock-market prediction

Pronunciation (NETtalk) EM) ﬂ)))

(Sejnowksi & Rosenberg, 1987)
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Protein Secondary Structure Prediction

(Holley-Karplus, Ph.D., etc):

a-helical

Supervised learning:

« Adjust weight vectors so
output of network matches
desired result

amino acid sequence

Input layer Layer of Layer of
of source hidden output
nodes neurons neurons



Recurrent Networks

Input Hidden Qutput

* Feed forward networks:
= Information only flows one way

= One input pattern produces one output

= No sense of time (or memory of previous state)

Information

e Recurrency
= Nodes connect back to other nodes or themselves
= Information flow is multidirectional

= Sense of time and memory of previous state(s)

 Biological nervous systems show high levels of recurrency (but feed-
forward structures exists too)
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Elman Nets

« Elman nets are feed forward networks with partial
recurrency

OUTPUT UNITS
1
/

!
!

]  HIDDEN UNITS

7 AN
’ ~

-f \\\
| | | |
INPUT UNITS CONTEXT UNITS

« Unlike feed forward nets, EIman nets have a memory or
sense of time
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Elman Nets

Classic experiment on language acquisition and processing (Elman, 1990)

e Task
= Elman net to predict successive words in sentences.

* Data
= Suite of sentences, €.g.
- “The boy catches the ball.”
- “The girl eats an apple.”
=  Words are input one at a time

* Representation

= Binary representation for each word, e.g.
- 0-1-0-0-0 for “girl”

* Training method
= Backpropagation
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Elman Nets
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Hopfield Networks

Sub-type of recurrent neural nets
= Fully recurrent
= Weights are symmetric
= Nodes can only be on or off
= Random updating

Learning: Hebb rule (cells that fire together
wire together)

Can recall a memory, if presented with a

corrupt or incomplete version

- auto-associative or

content-addressable memory
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Hopfield Networks

Task: store images with resolution of 20x20 pixels

—> Hopfield net with 400 nodes

Memorise:
1. Present image
2. Apply Hebb rule (cells that fire together, wire together)

- Increase weight between two nodes if both have same
activity, otherwise decrease

3. Gotol

Recall:
1. Present incomplete pattern
2. Pick random node, update
3. Go to 2 until settled
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Hopfield Networks
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Hopfield Networks

* Memories are attractors in state space

/’“‘"‘\\X/

Pl

"'H-\_\__\_\_\_._._'_,_,_,-»-‘
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Catastrophic Forgetting

* Problem: memorising new patterns corrupts the memory of older ones

- Old memories cannot be recalled, or spurious memories arise

« Solution: allow Hopfield net to sleep
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Solutions

« Unlearning (topfield, 1986)

- Recall old memories by random stimulation, but use an inverse
Hebb rule

—2 ‘Makes room’ for new memories (basins of attraction shrink)

= Pseudorehearsal rovins, 1995)

- While learning new memories, recall old memories by random
stimulation

- Use standard Hebb rule on new and old memories
—> Restructure memory
* Needs short-term + long term memory

- Mammals: hippocampus plays back new memories to neo-cortex,
which 1s randomly stimulated at the same time
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Unsupervised Learning



Unsupervised (Self-Organized) Learning

input layer output layer feed-forward (supervised)

feed-forward + lateral feedback

output layer _ _
(recurrent network, still supervised)

input layer

continuous ’ discrete . _
input ¥ output self-organizing network (unsupervised)
sSpace sSpace



Self Organizing Map (SOM)

Kohonen, 1984

neural lattice

0. Initialization: Start with appropriate initial values for the
synaptic strengths w, . In the absence of any a priori
information, the w, can be chosen at random.

1. Choice of Stimulus: Choose, according to the probability
density P(v), a random vector v representing a “sensory
signal.”

S € 2. Response: Determine the corresponding “excitation center”
§ from the condition

[[v—we | <|lv—we|| forallre A )

3. Adaptation Step: Carry out a “learning step” by changing
hes = exp(—(r — £)2/252 ) the synaptic strengths according to

e wl‘ffd + eh (v - wl‘f{d)

_ g and continue with step 1.
input signal space




[llustration of Kohonen Learning

Inputs: coordinates (x,y) of points
drawn from a square

Display neuron j at position x;,y; where 100 inputs 200 inputs

1ts S 1S maximum [

random initial positions 1000 inputs
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Why use Kohonen Maps?

* Image Analysis
- Image Classification

 Data Visualization
- By projection from high D -> 2D
Preserving neighborhood relationships
* Partitioning Input Space
Vector Quantization (Coding)
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Example

Modeling of the somatosensory map of the hand

. Martinetz &

Ritter

(

Schulten, 1992).




Example

Modeling of the somatosensory map of the hand (Ritter, Martinetz &

Schulten, 1992).
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Example:

Modeling of the somatosensory map of the hand (Ritter, Martinetz &
Schulten, 1992).

Figure 7.5 Here, the
assignment of Fig. 7.4 is
represented as the familiar
“imbedding” of the neu-
ron lattice in the space V,
i.e., on the hand surface.
To this end, each neuron is
marked at the position of
the center of gravity wy of
the touch receptors from
which it receives input,
and the resulting locations
are connected by lines if
the neurons are adjacent
in the lattice.




Example

Modeling of the somatosensory map of the hand (Ritter, Martinetz &

Schulten, 1992).
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Example

Modeling of the somatosensory map of the hand (Ritter, Martinetz &

Schulten, 1992).
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Example:

Modeling of the somatosensory map of the hand (Ritter, Martinetz &
Schulten, 1992).

Figure 7.8 Readaptation of the somatosensory map of the hand region of an
adult nocturnal ape due Lo the amputation of one finger. (a) (left) Before the
operation, each finger in the map is represented as one of the regions 1-5. (b)
(right) Several weeks after amputation of the middle finger, the assigned region
3 has disappeared, and the adjacent regions have correspondingly spread out
(after Fox, 1984).



Representing Topology
with the Kohonen SOM
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(a) (b)
* free neurons from lattice...

 stimulus—dependent connectivities



stimulus 5
vE MCIR

The “Neural Gas” Algorithm

(Martinetz & Schulten, 1992)

connectivity matrix:

Cije{o0, 1}
age matrix:
Tij €{0,...,T}

(i) assign initial values to the pointers w; € R?, i =
1, ..., Nand set all connection strengths C;; to
Zero;

(i1) select an input pattern v € M with equal prob-
ability for each v;

(ii1) for each unit / determine the number &; of units
j with '
v = wl < Iy = wi

by, for example, determining the sequence (i,
i s s 5 5 dnsse Y With

"V - wfa" < |[? - W, ” <...< "‘r - Wiy, ”a

(iv) perform an adaptation step of the pointers w;
according to the neural gas algorithm by setting

WM =wi KMy —wd) ji=1(,..., MV

(v) if G, = 0, set C;, > 0 and ¢;;, = 0, that is,
connect ig and i,. If Ci;, > 0, set {;; = 0, that
is, refresh connection iy, — i;

(vi) increase the age of all connections of i, by setting
Eii = iy + 1 for all_]With Cfnj > 0;

(vit) remove those connections of unit iy the age of

which exceeds T by setting C,; = 0 for all j with
Ci;> 0and ¢; > T continue with (ii).

e=¢, 1= A¢) T = T






Example (cont.)

Fig.2: The “neural gas” network quantizing a topologically heterogeneously structured input
data manifold. The data manifold consists of a three-dimensional (right parallelepiped), a two-
dimensional (rectangle), and a one-dimensional (circle and connecting line) subset. The dots mark
the centers of the receptive fields M; determined by the formal synaptic weights w;. Connections
between neural units ¢, j, i.e., C;; = 1, are indicated by connecting lines between the locations w;
and wj. Depicted are the initial state, the network after 5000, 10000, 15000, 25000, and at the
final state after 40 000 adaptation steps (from top left to bottom right) At the end of the adapta-
tion procedure the connections between the neural units reflect the topological structure and the
corresponding dimensionality of the data manifold.



More Examples: Torus and Myosin S1




Growing Neural Gas

GNG = Neural gas &
dynamical creation/removal of links

) O] @

a1 0 signals b1 100 signals

e] 2000 signals f1 10000 =signals g1 40000 signals  h) Yoronoi regions

© http://www.neuroinformatik.ruhr-uni-bochum.de



Why use GNG ?

« Adaptability to Data Topology
= Both dynamically and spatially

e Data Analysis

e Data Visualization

© Leonard Studer, humanresources.web.cern.ch/humanresources/external/training/ tech/special/DISP2003/DISP-2003_L21A_30Apr03.ppt



Radial Basis Function Networks

Outputs as Usually apply a
ligear' :,|> unsupervised learning
combination of procedure

standard gaussian .SeT number Of neur‘ons
T ' and then adjust :

g _/L 1.Gaussian centers

hidden layer of

2.Gaussian widths

3.weights

RBF neurons ‘
[ ]

Inputs
(fae\ in) :|>

© Leonard Studer, humanresources.web.cern.ch/humanresources/external/training/ tech/special/DISP2003/DISP-2003_L21A_30Apr03.ppt



Why use RBF ?

Density estimation

Discrimination

Regression

Good to know: O

= Can be described as Bayesian Networks

= Close to some Fuzzy Systems

© Leonard Studer, humanresources.web.cern.ch/humanresources/external/training/ tech/special/DISP2003/DISP-2003_L21A_30Apr03.ppt



Demo

Internet Java demo http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/DemoGNG/GNG.html

Hebb Rule
LBG / k-means
Neural Gas
GNG
Kohonen SOM



Revisiting Quantization



Vector Quantization

Lloyd (1957)| Digital Signal Processing,
Linde, Buzo, & Gray (1980)) Speech and Image Compression.
Martinetz & Schulten (1993) Neural Gas.

Encode data (in RP ) using a finite set {Wj} (J=1,...,k) of codebook vectors.
Delaunay triangulation divides R® into k Voronoi polyhedra (“receptive fields”):

V, = {VE R° ‘HV—WiHS HV—WJ.HVj}



Vector Quantization

Fig. 3. Partitioning of two-dimensional space (N = 2) into
L = 18 cells. All input vectors in cell C; will be quantized as
the code vector y. The shapes of the various celis can be

very different.



k-Means a.k.a. Linde, Buzo & Gray (LBG)

- .
¢
. -
L] ; *
- s

Encoding Distortion Error:

LS Es Vi—W.
)»\/Qy i (datazp;)ints) | J (I)
Lower E({Wj (t)}) iteratively: Gradient descent Vr:
& OE
AWr(t) = Wr(t)—Wr(t—l) — —5 M — Z rj(l) d .

Inline (Monte Carlo) approach for a sequence V, (t) selected at random
according to propability density function d. :

AW, (t) — ‘9 rj(l) (Vi(t)_wr)’

Advantage: fast, reasonable clustering.
Limitations: depends on initial random positions,
difficult to avoid getting trapped in the many local minima of E



Neural Gas Revisited

Avoid local minima traps of k-means by smoothing of energy function:

vr: Aw (t) = £-e -(v(t)-w ),

r

Where Sr(Vi (t), {Wj }) is the closeness rank:

s, =0 S, =1 s, =k—1




Neural Gas Revisited

Note: 4 — 0 :k-means.
A # 0 not only “winner” Wj(i) also second, third, ... closest are updated.

Can show that this corresponds to stochastlc gradient descent on

E((w).2) = sz Wi [ o

Note: A —0: E — E . k-means. } ( )
A — oo : E parabolic (single minimum). — ﬂ“t \

»




Neural Gas Revisited

Q: How do we know that we have found the global minimum of E?
A We don't (in general).

But we can compute the statistical variability of the {Wj} by repeating the
calculation with different seeds for random number generator.

Codebook vector variability arises due to:
* statistical uncertainty,
 spread of local minima.

A small variability indicates good convergence behavior.
Optimum choice of # of vectors k: variability is minimal.



Pattern Recognition



Pattern Recognition

Definition: “The assignment of a physical object or event to one
of several prespecified categeries” -- Duda & Hart

« A pattern is an object, process or event that can be given a name.

» A pattern class (or category) is a set of patterns sharing common attributes and
usually originating from the same source.

» During recognition (or classification) given objects are assigned to prescribed
classes.

» A classifier is a machine which performs classification.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



PR Applications

i « Handwritten: sorting letters by postal code,
e Optical Character input device for PDA"s.

.. * Printed texts: reading machines for blind
Recognition (OCR) people, digitalization of text documents.

 Face recognition, verification, retrieval.

 Biometrics  Finger prints recognition.
* Speech recognition.

» Medical diagnosis: X-Ray, EKG analysis.

® 1 1 .
Diagnostic systems » Machine diagnostics, waster detection.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Approaches

« Statistical PR: based on underlying statistical model of patterns and pattern
classes.

 Structural (or syntactic) PR: pattern classes represented by means of formal
structures as grammars, automata, strings, etc.

« Neural networks: classifier is represented as a network of cells modeling
neurons of the human brain (connectionist approach).

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Basic Concepts

Pattern -7
X, Feature vector X € X

X, - A vector of observations (measurements).

=X : S
- X s a point in feature space X.

Hidden state yeY

- Cannot be directly measured.

- Patterns with equal hidden state belong to the same class.

Task
- To design a classifer (decisionrule) q: X =Y

which decides about a hidden state based on an onbservation.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Example

height \ Task: jockey-hoopster recognition.

X, The set of hidden state is Y = {H, J}
=X
The feature space is X = R

Training examples {(Xp yl)a ceey (X| > Y| )}
y=H

Linear classifier: X,

H if (w-x)+b>0

=13 i (wx)+b<0

(W-x)-+b=0

© Voitech Franc, cmp.feIk.cvut.cz/~xfrancv/talkg1franc—printr003.ppt



Components of a PR System

Sensors and Feature : Class
. . =—> Classifier —> .
preprocessing extraction assignment

Teacher :>[ Learning algorithm }

* Sensors and preprocessing.

Pattern \—)}

* A feature extraction aims to create discriminative features good for classification.
* A classifier.

* A teacher provides information about hidden state -- supervised learning.

* A learning algorithm sets PR from training examples.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Feature Extraction

Task: to extract features which are good for classification.

Good features: « Objects from the same class have similar feature values.

* Objects from different classes have different values.

“Good” features

“Bad” features

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Feature Extraction Methods

Feature extraction ) Feature selection
_ - m -
1 \
m1 0, Xl Xl
m,

m, 0, X, m / X,
. . 3 .

m, | P, X, | N I O
k

Problem can be expressed as optimization of parameters of featrure extractor ®(0)

Supervised methods: objective function is a criterion of separability
(discriminability) of labeled examples, e.g., linear discriminant analysis (LDA).

Unsupervised methods: lower dimesional representation which preserves important
characteristics of input data 1s sought for, e.g., principal component analysis (PCA).

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Classifier

A classifier partitions feature space X into class-labeled regions such that

X=X uX,u..uX, ad X NX,N..NXy ={0}

The classification consists of determining to which region a feature vector x belongs to.

Borders between decision boundaries are called decision regions.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Representation of a Classifier

A classifier 1s typically represented as a set of discriminant functions
f(x): X >R,i=1...|Y]

The classifier assigns a feature vector x to the i-the class if f(x)>1 j (x) V J # |

f, (x)
f (x
X ,(X) @ y
Feature vector : Class 1dentifier

fy (%)

Discriminant function

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Bayesian Decision Making

* The Bayesian decision making 1s a fundamental statistical approach which
allows to design the optimal classifier if complete statistical model 1s known.

Definition: Obsevations X A loss function W:YxD—->R
Hidden states Y A decision rule q:X —>D
Decisions D A joint probability p(X,Y)

Task: to design decision rule g which minimizes Bayesian risk

R(@) =D D p(x,Y) W(q(x),Y)

yeY xeX

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Example of a Bayesian Task

Task: minimization of classification error.

A set of decisions D i1s the same as set of hidden states Y.
0 If q(x)=y

0/1 - loss function used W(q(x),Y) = _
1 1if gx)=y

The Bayesian risk R(q) corresponds to probability of
misclassification.

The solution of Bayesian task 1s

q =argminR(q) = Yy =argmax p(Yy|Xx) = argmax p(x|Y)p(y)
q y y p(X)

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Limitations of the Bayesian Approach

* The statistical model p(x,y) 1s mostly not known therefore
learning must be employed to estimate p(x,y) from training
examples {(X;,Y),---,(X,,¥,)} -- plug-in Bayes.

* Non-Bayesian methods offers further task formulations:
* A partial statistical model is avaliable only:
* p(y) 1s not known or does not exist.
* p(x]y,0) 1s influenced by a non-random intervetion 0.
* The loss function is not defined.

* Examples: Neyman-Pearson‘s task, Minimax task, etc.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Discriminative Approaches

Given a class of classification rules q(x;0) parametrized by 0=

the task is to find the “best” parameter 0* based on a set of
training examples {(X;,y,),.--,(X;,y,)} -- supervised learning.

The task of learning: recognition which classification rule is
to be used.

The way how to perform the learning 1s determined by a
selected inductive principle.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Empirical Risk Minimization Principle

The true expected risk R(q) 1s approximated by empirical risk

R, (q:0) =3 W(q(x;:6). y,)
(5

with respect to a given labeled training set {(x;,y),---,(X;,¥,)}-

The learning based on the empirical minimization principle 1s
defined as

0" =argminR, (q(x;0))
0

Examples of algorithms: Perceptron, Back-propagation, etc.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Overfitting and Underfitting

Problem: how rich class of classifications q(x;0) to use.

underfitting good fit overfitting

Problem of generalization: a small emprical risk R, does not
imply small true expected risk R.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Structural Risk Minimization Principle

Statistical learning theory -- Vapnik & Chervonenkis.

An upper bound on the expected risk of a classification rule qeQ

1 1
R(Q) <R, (@) +Rg, (Z’ h,log ;)

where / is number of training examples, h is VC-dimension of class
of functions Q and 1-c is confidence of the upper bound.

SRM principle: from a given nested function classes Q,,Q,,...,Q

such that
h <h <..<h

m?

select a rule q* which minimizes the upper bound on the expected risk.

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Unsupervised Learning

Input: training examples {x,,...,X,} without information about the
hidden state.

Clustering: goal 1s to find clusters of data sharing similar properties.

A broad class of unsupervised learning algorithms:

X, X, } | VoY,
’LClass1ﬁerJ7—’ Classifier q: Xx® —>Y
) A O
| Learning Learning algorithm L 1 (XxY)" — @
algorithm (supervised)

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Example

k-Means Clustering:

— {X,..L X,

Classifier

y =q(x) = al_‘glmkin [ x—w |

0={w,...,w}

Learning algorithm
1

Wy =—> x;, I;={j:q(x;) =i} |
|Ii|j€Ii

{y19°--9 y(} .

Goal 1s to minimize

(

2
2l = |
i=1

© Voitech Franc, cmp.felk.cvut.cz/~xfrancv/talks/franc-printro03.ppt



Neural Network References

» Neural Networks, a Comprehensive Foundation, S. Haykin, ed. Prentice Hall
(1999)

 Neural Networks for Pattern Recognition, C. M. Bishop, ed Claredon Press,
Oxford (1997)

« Self Organizing Maps, T. Kohonen, Springer (2001)



Some ANN Toolboxes

» Free software
= SNNS: Stuttgarter Neural Network Systems & Java NNS
= GNG at Uni Bochum

» Matlab toolboxes
= Fuzzy Logic
= Artificial Neural Networks

= Signal Processing



Pattern Recognition /
Vector Quantization References

Textbooks

Duda, Heart: Pattern Classification and Scene Analysis. J. Wiley & Sons, New York,
1982. (2nd edition 2000).

Fukunaga: Introduction to Statistical Pattern Recognition. Academic Press, 1990.
Bishop: Neural Networks for Pattern Recognition. Claredon Press, Oxford, 1997.

Schlesinger, Hlavac: Ten lectures on statistical and structural pattern recognition.
Kluwer Academic Publisher, 2002.



