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Sampling: Spatial/Temporal Domain
Sampling a continuous function f at time/space interval ∆t to 
produce a discrete function g

g[n] = f(n∆t)

is the same as multiplying it by a comb:

g = f combh

where h = ∆t

t
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Sampling: Spatial/Temporal Domain
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Sampling: Frequency Domain
Sampling in the spatial/temporal domain by multiplying with 
combh

g = f combh

is the same as convolution in the frequency domain with the 
transform of combh:

G = F * comb1/h

Convolution of a function and a comb causes a copy of the 
function to “stick” to each tooth of the comb, and all of them add 
together
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Sampling: Frequency Domain
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Reconstruction
In theory, we can reconstruct the original continuous function by 
removing all of the extraneous copies of its spectrum created by
the sampling process:

F(s) =  G(s) Π1/h(s)

In other words, keep everything in the frequency domain 

between and throw the rest away
h

s
h 2

1
2
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Reconstruction: Graphical Example
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The Sampling Theorem
We can only do this reconstruction if the duplicated copies do 
not overlap

They do not overlap iff:

1. The signal is band limited, and

2. The highest frequency in the signal is less than

In other words, the sampling rate 1/h must be twice the 
frequency of the highest frequency in the image

This is called the Nyquist rate

h2
1
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Aliasing
What if the duplicated copies in the frequency domain do 
overlap?

High frequency parts of the signal (those higher than       ) intrude 
into neighboring copies

The higher the frequency, the lower the point of overlap in the 
adjacent copy

These high frequencies masquerading as low frequencies is 
called aliasing

False low-frequency patterns are called Moiré patterns

h2
1
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Moiré Patterns
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Sampling: Frequency Domain
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Sampling: Above the Nyquist Rate
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Sampling: At the Nyquist Rate
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Sampling: Below the Nyquist Rate
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Preventing Aliasing
You have two choices:

1. Increase your sampling

2. Decrease the highest frequency in the signal before
sampling
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Reconstruction
Reconstruction was

F(s) = G(s) Π1/h(s)

But in the time/spatial domain this is equivalent to

f(t) = g(t) * sinc(2πt/h)

So, convolve your discretely-sampled (non-aliased) image with a 
sinc function and you can reconstruct the original continuous 
image
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Imperfect Reconstruction
Problem: not perfect — the sinc function has infinite extent

By not perfectly clipping in the frequency domain, the duplicate
copies now look like false high frequencies

“Jaggies” in graphics: false high frequencies caused by poor 
reconstruction:

©http://www.cs.unc.edu/~lastra/comp238/Assignments/assignment_1.html 



Imperfect Reconstruction

Correcting Imperfect Reconstruction:

1. Sample well above the Nyquist rate

2. Low-pass filter after reconstruction

Imperfect
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Typical Processing Pipeline
1. Low-pass filter to reduce aliasing

2. Sample

3. Do something with the digitized signal/image

4. Reconstruct

5. Low-pass filter to correct for imperfect reconstruction
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Statistical Reconstruction



Statistical Reconstruction
Statistical image reconstruction is the process of attempting to
recreate the original (2D or 3D) signal given possibly noisy or 
corrupted 2D images

Terms:

Scene: the 2D or 3D “real world”

Images: (possibly corrupted) 2D pictures of a scene

Image reconstruction attempts to recreate the scene from images.
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Required Knowledge
Reconstruction algorithms usually use one or more of

Knowledge about the image formation process

Knowledge about properties of the original scene

Examples:
Deconvolution requires knowledge of the point spread 
function
Wiener filtering requires an estimate of the strength of the 
noise (see Russ textbook).
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Knowledge About Image Formation
Knowledge about image formation puts limits on reconstruction

Usually though “fitting the data”: the reconstructed image can’t vary 
too much from the original corrupted image

Example:
Assuming white noise with standard deviation σ, the 
probability of getting noisy image g from scene f is:

Use this info to find the most probable model for f. 

∏ σ−−=
i

gf iiefgp
22 /)()|(
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Knowledge About Scene Properties
Possible general properties:

Generally smooth

A few scattered rapid transitions

Possible specific properties:

Known scene contents (subject, anatomy, etc)

Other related images/scenes

p( f ) can be determined for all scenes f
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Knowledge About Scene Properties
Example: Penalize unsmooth images

where N(i) denotes the “neighborhood” of i

Notice that one large discontinuity in intensity is more likely than several 
smaller discontinuities

Results in piecewise-constant images with infrequent but rapid 
discontinuities. Extreme case: use in color space conversion:

∑
∈

−−=
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ff kiefp
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Statistical Reconstruction
Goal: for all possible reconstructed scenes f, find the one that 
maximizes p( f | g) for image g

Problem: your knowledge of the imaging process tells you         
p(g | f ), but how do you determine p(f | g) ?

Really big problem: How big is the space of all possible scenes f ?
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Bayesian Reconstruction

p(g| f ) is the data term

p(f ) is the a priori knowledge (prior)

p(g) is usually assumed to be uniform

p( f | g) is called the “a posteriori estimate” or “likelihood”

This is often called “maximum a posteriori” (MAP) or 
“maximum likelihood” estimation.

)(
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Bayesian Reconstruction
If p(g | f ) and p( f ) are negative exponentials, the process 
usually boils down to minimizing some function

data(f, g) + λ prior( f )

where data(f, g) penalizes reconstructions f that don’t agree with 
the data g, and prior( f ) penalizes reconstructions that are a 
priori unlikely (knowledge about scene properties).

The weight λ controls the relative importance of the two.
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Balancing the Data and Prior Terms

data(f, g) + λ prior( f )

If λ is set too low, the data term dominates and there is little 
improvement

If λ is set too high, the prior term dominates and the 
reconstruction may not be true to the original
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Optimization
Since the space of all f to search is far too large, non-exhaustive 
functional minimization techniques must be used:

Gradient-descent

Simulated annealing

Neural networks

Graduated non-convexity

Etc.
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Other Reconstruction Methods
There are many other reconstruction methods, but nearly all

Use knowledge about the process that corrupted the 
image/signal

Use knowledge about properties of the original scene/data

Attempt to optimize some form of likelihood function
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Questions?

Reconstruction Concepts

Suggested Reading:

Kenneth R. Castleman, Digital Image Processing, 
Chapter 12, 16



3D Reconstruction



3D Reconstruction

•2D views are often not sufficient to recover the 3D object

Frank J., Electron Tomography, Plenum, New 
York, 1992



3D Photography

• “3D stereoscopic imaging”
been around as long as cameras have
Use camera with 2 or more lenses (or stereo attachment)
Use stereo viewer to create impression of 3D

© http://www.cs.unc.edu/~debug/258/3dpho/3dpho.ppt



Motivation 

• Digitizing real world objects

• Sometimes called “3D scanning”

• Getting realistic 3D models

humans

objects

places

© http://www.cs.unc.edu/~debug/258/3dpho/3dpho.ppt



Stereo Matching
• Stereo Matching Basics

Needs two images, like stereoscopy
Given correspondence between
points in 2 views, we can find 
depth by triangulation
But correspondence is hard problem!
A lot of literature on solving it…

• Stereo Matching Output
• 3D point cloud
• Remove outliers and pass through surface reconstructor

© http://www.cs.unc.edu/~debug/258/3dpho/3dpho.ppt



Using Shades

• Shape from Shading, [Horn]
Invert Lambert’s Law (L=I k cos α)
knowing the intensity at image point
to solve for normal

• Photometric stereo [Woodham]
An extension of the above
Two or more images under different 
illumination conditions.
Each image provides one normal
Three images provide unique solution for a 
pixel.
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Active Sensing
• Passive methods (eg. stereo matching) suffer from ambiguities - many similar 

regions in an image correspond to a point in the other.

• Project known / regular pattern (“structured light”) into scene to disambiguate

• get precise reconstruction by combining views
Laser rangefinder
Projectors and imperceptible structured light

© http://www.cs.unc.edu/~debug/258/3dpho/3dpho.ppt



Desktop 3D Photography
Jean-Yves Bouguet, Pietro Perona

• Computation of 3d position from the plane of light source, stick and 
shadow

• Light object with lamp & aim camera at it
• Move stick around & capture shadow sequence
• Use image of deformed shadow to calc 3D shape

© http://www.cs.unc.edu/~debug/258/3dpho/3dpho.ppt



Volumetric Methods
Chevette Project, Debevec, 1991
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Voxel Models from Images

• When there are 2 colors in the image - use volume 
intersection [Szeliski 1993]

Back-project silhouettes from camera views & intersect
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Voxel Models from Images
• With more colors but constrained viewpoints, we use voxel coloring [Seitz & 

Dyer, 1997]
Choose a voxel & project to it from all views
Color if enough matches
Prob - determining visibility
of a point from a view
Solution - depth ordered
traversal using a “view independent                                                
distance from separating plane”
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Space Carving

• Algorithm [Kutulakos & Seitz,                                                       
1998] :
a) Initialize V to volume 

containing true scene
b) For each voxel, 

- check if photo-consistent 
- if not, remove (“carve”) it.

• Can be shown to converge to maximal photo-consistent scene (union of 
all photo-consistent scenes).
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Space Carving : Results
• House walkthru - 24 rendered input views

• Results best as seen from one of the original views
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Modeling from a Single View
(Criminisi et al, 1999)

• Compute 3D affine measurements of the scene from single perspective image

• Use minimal geom info 

vanishing line for a pencil of
planes || to reference plane

vanishing point of parallel
lines along a direction
outside reference plane

© http://www.cs.unc.edu/~debug/258/3dpho/3dpho.ppt



Case Study - Façade
Debevec, Taylor & Malik, 1996

• Modeling architectural scenes from photographs

• Not fully automatic (user inputs blocky 3D model)
Using blocks leads to fewer params in architectural models

• User marks corresponding features on photo

• Computer solves for block size, scale, camera rotation by minimizing error of 
corresponding features

• Reprojects textures from the photographs onto the reconstructed model
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Arches and Surfaces of Revolution

Taj Mahal
modeled from

one photograph
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Case Study - Digital Michelangelo Project

• 3D scanning of large statues (Levoy et al, 2000)

• Separate geometry and color scans

custom rig : laser scanner & camera mounted concurrently

• Range scan post-processing

Combine range scans from different positions

- Use volumetric modeling methods (Curless, Levoy 1996)

Fill holes using space carving
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Digital Michelangelo -
Scanning a Large Object

• calibrated motions
pitch  (yellow)
pan  (blue)
horizontal translation  (orange)

• uncalibrated motions
vertical translation
remounting the scan head
moving  the entire gantry

© http://www.cs.unc.edu/~debug/258/3dpho/3dpho.ppt



Digital Michelangelo

©http://graphics.stanford.edu/projects/mich/ © http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/
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3D Reconstruction in Tomography



•• XX--Ray source rotates around the opening Ray source rotates around the opening 
•• Detector records different projections of the body Detector records different projections of the body 

(PC adds 1D projections to form the 2D slices, which form the 3D(PC adds 1D projections to form the 2D slices, which form the 3D volume)volume)

Computer reconstructs the 3D Computer reconstructs the 3D 
volumevolume

3D Reconstruction in Tomography

© Hans Tietz, TVIPS GMBH



1.  Recording of projections (21.  Recording of projections (2--D) at D) at 
the various tilt anglesthe various tilt angles

2.  Backprojection of the 32.  Backprojection of the 3--D object D object 
from the 2from the 2--D imagesD images

Back Projection

© Hans Tietz, TVIPS GMBH



1.  Projection1.  Projection 2.  Backprojection2.  Backprojection

© Hans Tietz, TVIPS GMBH

Back Projection



© Hans Tietz, TVIPS GMBH

Example: 1D 2D



+ ++
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Example: 1D 2D



Oversampling

Undersampling

© Hans Tietz, TVIPS GMBH

Under and Over Sampling in Fourier Space



along direction of projection: no resolution

no resolution

resolution

no resolution

resolution

no resolution

resolution

direction of projection

no resolution

resolution
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Anisotropic Resolution



Electron Tomography 3D Structure

differences in 

particle size,
particle preparation,
resolution,....

Baumeister & Steven, TIBS 25, 2000

© Hans Tietz, TVIPS GMBH



... ... automatedautomated

© Hans Tietz, TVIPS GMBH

Electron Tomography ...

... ... manualmanual
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Electron Tomography Setup



The Electron Microscope
• Transmission Electron Microscope (TEM)

Detects internal structure of sample
Thin samples, so beam is not 
entirely absorbed
Cryo-EM: mostly phase object
Projection of 3D structure onto 2D 
screen (actually, projection of 
electrostatic potential)

http://cryoem.berkeley.edu/~nieder/em_for_dummies
http://www.udel.edu/chem/bahnson/chem645/presentations/Bianco.pdf 



The Electron Microscope

• Electron gun: superheated metal filament emit 
electrons, collated into beam by thermionic
and field emission gun

• Lenses: magnetic coils tuned to focus electron 
beam, to magnify image and to sharpen 
contrast 

• Stage: holds sample, may be tilted by 
goniometer

• Aperture: limits size of electron beam. 
Condenser aperture: maintains size of 
electron beam. 
Objective aperture: controls contrast

http://cryoem.berkeley.edu/~nieder/em_for_dummies
http://www.udel.edu/chem/bahnson/chem645/presentations/Bianco.pdf 



• Set of projections of 
the tilted structure

• Correction of 
imperfection of the 
stage

Data
Collection

3-D
Reconstruction

Display &
Analysis

• Alignment of the 
various projections

• Tomographic 
reconstruction

• Surface and 
volume rendering

• Merging and 
comparison with 
other structures

• Time: 15 minutes to 
several hours

• Time: 20 minutes 
to hours

• Time: 15 minutes 
to several weeks 
or months

© Hans Tietz, TVIPS GMBH

3 Phases of Electron Tomography



specimen shrinkage anisotropic resolution: tilt range (<)< 90°

d: resolution for ET reconstruction

D: object diameter

N: number of tomographic images

100 µm          10 µm          1 µm          100 nm       10 nm      1 nm

cell         nucleus        centrosome vesicle     bilayer

Projections equally distributed over full angular range (±90º) 

6 nm resolution using 150 images of a 300 nm structure

d = π (D/N) Crowther et al., 1970

© Hans Tietz, TVIPS GMBH

Attainable Resolution



in direction of projection: no resolution anisotropic resolution

object 0° incr. 40° @ +/-40° incr. 20° @ +/-40°

incr. 5° @ +/-40° incr. 5° @ +/-60° incr. 5° @ +/-80° incr. 5° @ +/-90°

© Hans Tietz, TVIPS GMBH

Back-Projection Artifacts



in direction of projection: no resolution anisotropic resolution

creation of 
object artifacts

along direction of projection:
object elongation

incr. 40° @ +/-40°

incr. 5° @ +/-40°

object

© Hans Tietz, TVIPS GMBH

Back-Projection Artifacts



tilt axis

reference

tilt range 
+/- 90°

tilt range 
+/- 60°

tilt range 
+/- 30°

tilt incr. 
5°

tilt incr. 
1°

0°

© Hans Tietz, TVIPS GMBH

Missing Wedge Effect



reference

tilt range - 30° -
+ 90°, tilt incr. 1°

combination of (a)
and (b)

tilt range +/- 60°, tilt 
incr. 5° (b)

tilt range +/- 60°, tilt 
incr. 5° (a)

0°

0°

© Hans Tietz, TVIPS GMBH

Missing Wedge Effect



• Optimal : ± 90° tilt

• At high tilt:
limitations of holder
grid and sample projected
increased path length

single tilt: 
missing wedge double tilt: missing pyramid

multiple tilt missing cone

© Hans Tietz, TVIPS GMBH

Missing Wedge Effect



interpretation of the tomogram with 
segmentation and denoising

Tomography permits the viewing of computerTomography permits the viewing of computer--generated "slices" that generated "slices" that 
are much thinner than could ever be cut physically with a microtare much thinner than could ever be cut physically with a microtome. ome. 

tomogram

Tilt Series of a Mammalian Cell 
University of Colorado

Marsh, B.J., see also http://bio3d.colorado.edu



IMOD: Kremer et al., J. Struc. Biol., 116, 71-76, 1996

surface representation: 
4µm x 4µm x 1µm

Tilt Series of a Mammalian Cell 
University of Colorado

Marsh, B.J., see also http://bio3d.colorado.edu



3D Reconstruction in High Resolution 
Electron Microscopy

Tomography (tilt series): 6-10nm
EM (particle averaging): 0.5-3nm

Goal: Single View of Many Particles



Types of Specimens
• Single Particles (Proteins, Ribosome)

No crystallization
Weak amplitude, no diffraction, alignment ambiguity, particle flexibility
~7 angstroms

• Fibers and filaments (tubulin, collagen)
No crystallization, 2D distortion corrections, phase restrictions
Weak amplitude, no diffraction
~9 angstroms

• 2D crystals (BR, AQP, LHCII)
Diffraction amplitudes, 2D distortion corrections, crystallographic methods
Crystallization, many tilts required, anisotropic data
~3 angstroms

• Tubular crystals (AchR, Ca++-ATPase)
Crystallization, No diffraction
Isotropic data, 3D distortion corrections, phase restrictions
~5 angstroms

© http://spot.colorado.edu/~stowellm



Single Particles

• Applicable to any protein or protein 
complex > 200kD

• Most common sample

• Number of software suites available

• Resolution ~9A (<7 with 
symmetry)

© http://spot.colorado.edu/~stowellm



2D Crystals

Henderson and Unwin

© http://spot.colorado.edu/~stowellm



Tubular Crystals

2D

© http://spot.colorado.edu/~stowellm



Tubular vs. 2D or 3D Crystals

© http://spot.colorado.edu/~stowellm



Image Recording

• Film
High density content (~20kx16k pixels)
Slow (development time, drying) 
Requires digitization (scanning takes hours)

• CCD 
Low density content (4kx4k pixels)
Fast (ms to sec)
Direct digital 

© http://spot.colorado.edu/~stowellm



Processing Data
• Single Particles (Proteins, Ribosome)

Pick particles
Align
Classify, average and reconstruction

• Fibers and filaments (tubulin, collagen)
Pick segments determine symmetry
Align/rotate
Average

• 2D crystals (BR, AQP, LHCII)
Process images to achieve phases
Process diffraction data for amplitudes
Combine and refine as in X-ray

• Tubular crystals (AchR, Ca++-ATPase)
Determine tube symmetry
Pick segments and distortion correction
Average and sum segments

© http://spot.colorado.edu/~stowellm



History of Electron Microscopy 
and 3D Reconstruction Methods

• 1950s: membrane topology of cellular structures, e.g. mitochondria

• 1950s: (Crick, Klug et al) FT of helical structures, selection rules

• 1964: (Parson and Martius)  high resolution electron diffraction on fibers

• 1968: (DeRosier and Klug) first 3D structure determination of T4 Bacteriophage tail 
based on helical reconstruction

• 1970: (Crowther et al) first icosahedral viruses

• 1972 (Matricardi et al), 1974 (Taylor and Glaeser), 1975 (Unwin and Henderson): 
2D crystals

• 1983 (Knauer et al): ribosome 3D reconstruction (asymmetric single particle)

• 1990 (Henderson et al): atomic resolution of bacteriorhodopsin (2D crystal)



Cryo EM Micrograph of Single Particles

© Joachim Frank



What is Observed 

© Joachim Frank



Main Assumptions 

1) All particles in the specimen have identical 
structure

2) All are linked by 3D rigid body transformations 
(rotations, translations)

3) Particle images are interpreted as a “signal” part (= 
the projection of the common structure) plus “noise”

Important requirement:
even angular coverage, without major gaps.

© Joachim Frank



How to Get Even Angular Coverage 

© Joachim Frank



Particle Picking

© Joachim Frank



Particle Picking

Many algorithms exist
Recent review (current state of the art):
Potter C. S. et al. J Struct Biol. (2004)Aug;145:3-14

© Joachim Frank



3D Reconstruction 

Projection Theorem:

The 2D Fourier transform of the
2D projection of a 3D density is a
central section of the 3D
Fourier transform of the density
perpendicular to the
direction of projection.

© Joachim Frank



3D Reconstruction 

Projection Theorem:

The 2D Fourier transform of the
2D projection of a 3D density is a
central section of the 3D
Fourier transform of the density
perpendicular to the
direction of projection.

This holds in Fourier Space.



Angular Reconstitution 

van Heel et al, Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307–369. 

Real Space:

Common Line 
Projection 
Theorem

Two different 2D 
projections of the 
same 3D object 
always have a 1D 
line projection in 
common.



Sinograms

van Heel et al, Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307–369. 

Determine relative 
orientations with 
common lines!



What if Particles are Aligned with Grid?

© Joachim Frank



Solution: Tilt of Specimen

© Joachim Frank



Random Conical Tilt

© Joachim Frank



Missing Cone Artifacts

© Joachim Frank



Reference-Based Projection Matching

adapted from an image by Joachim Frank

Reference <-> supervised



Preliminary Model

© Steve Ludtke



Projections

© Steve Ludtke



Classification

© Steve Ludtke



Class Averages

© Steve Ludtke



Iteration 1

© Steve Ludtke



Iteration 2

© Steve Ludtke



Iteration 3

© Steve Ludtke



Iteration 4

© Steve Ludtke



GroEL Reconstruction at 6.5Å

© Steve Ludtke



Reference - Electron Microscopy

Chapters 3,4,5 in: Joachim Frank, Three-Dimensional Electron 
Microscopy of Macromolecular Assemblies (1996, Academic 
Press)


