
Fourier Transform

For students of HI 5323
“Image Processing”

Willy Wriggers, Ph.D.
School of Health Information Sciences

http://biomachina.org/courses/processing/07.html

T H E U N I V E R S I T Y of T E X A S

H E A L T H S C I E N C E C E N T E R A T H O U S T O N

S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S

Frequency Analysis

© http://www.cs.sfu.ca/~hamarneh/courses/cmpt340_04_1© http://www.physics.gatech.edu/gcuo/UltrafastOptics/PhysicalOptics/

Here, we write a square
wave as a sum of sine
waves:

Frequency Analysis
• To use transfer functions, we must first decompose a signal into its component

frequencies

• Basic idea: any signal can be written as the sum of phase-shifted sines and
cosines of different frequencies

• The mathematical tool for doing this is the Fourier Transform

© www.dai.ed.ac.uk/HIPR2/ fourier.htm

image wave magnitudes wave phases

General Idea of Transforms
Given an orthonormal (orthogonal, unit length) basis set of vectors
{ēk}:

Any vector in the space spanned by this basis set can be
represented as a weighted sum of those basis vectors:

To get a vector’s weight relative to a particular basis vector ēk:

Thus, the vector can be transformed into the weights ak

Likewise, the transformation can be inverted by turning the
weights back into the vector

∑=
k

kkeav

kk eva ⋅=

Linear Algebra with Functions
The inner (dot) product of two vectors is the sum of the point-
wise multiplication of each component:

Can’t we do the same thing with functions?

Functions satisfy all of the linear algebraic requirements of
vectors

∑ ⋅=⋅
j

jvjuvu][][

*() ()f g f x g x dx
∞

−∞

⋅ = ∫

Transforms with Functions
Just as we transformed vectors, we can also transform functions:

Inverse

Transform

Functions {ek(t)}Vectors {ēk[j]}

∑ ⋅=⋅=
j

kkk jejveva][][

∑=
k

kkeav

*() ()k k ka f e f t e t dt
∞

−∞

= ⋅ = ∫

)()(teatf
k

kk∑=

Basis Set: Generalized Harmonics
The set of generalized harmonics we discussed earlier form an
orthonormal basis set for functions:

{ei2πst}

where each harmonic has a different frequency s

Remember:

ei2πst = cos(2πst) + i sin(2πst)

The real part is a cosine of frequency s
The imaginary part is a sine of frequency s

The Fourier Series

Inverse

Transform

Harmonics {ei2πst}All Functions {ek(t)}

*() ()k k ka f e f t e t dt
∞

−∞

= ⋅ = ∫

)()(teatf
k

kk∑=

∫
∞

∞−

−=

⋅=

dtetf

efa

tsi

tsi
k

k

k

π

π

2

2

)(

∑=
k

tsi
k

keatf π2)(

The Fourier Transform
Most tasks need an infinite number of basis functions
(frequencies), each with their own weight F(s):

Inverse

Transform

Fourier TransformFourier Series

∫
∞

∞−

−=

⋅=

dtetf

efsF

sti

sti

π

π

2

2

)(

)(

∫
∞

∞−

= dsesFtf tsi kπ2)()(

∫
∞

∞−

−=

⋅=

dtetf

efa

tsi

tsi
k

k

k

π

π

2

2

)(

∑=
k

tsi
k

keatf π2)(

The Fourier Transform
To get the weights (amount of each frequency):F

To convert weights back into a signal (invert the transform):

F(s) is the Fourier Transform of f(t): F(f(t)) = F(s)

f(t) is the Inverse Fourier Transform of F(s): F-1(F(s)) = f(t)

∫
∞

∞−

−= dtetfsF sti π2)()(

∫
∞

∞−

= dsesFtf sti π2)()(

Notation
Let F denote the Fourier Transform:

F = F(f)

Let F-1 denote the Inverse Fourier Transform:

f = F-1(F)

How to Interpret the Weights F(s)
The weights F(s) are complex numbers:

How much of a sinusoid of frequency s you need

What phase that sinusoid needs to be

Magnitude

Phase

How much of a cosine of frequency s you need

How much of a sine of frequency s you need

Real part

Imaginary part

Magnitude and Phase
Remember: complex numbers can be thought of in two
ways: (real, imaginary) or (magnitude, phase)

Magnitude:

Phase:

22)()(FFF ℑ+ℜ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ℑ
ℜ

=
)(
)(arctan)(

F
FFφ

© www.dai.ed.ac.uk/HIPR2/ fourier.htm

image |F| ɸ (F)

Odd and Even Functions

*for real-valued signals.

Any function f(t) can be broken into even and odd parts:

f(t) = fe(t) + fo(t) = ½[f(t) + f(-t)] + ½[f(t) - f(-t)]

fe fo

fo(t) = -fo(-t)

Anti-symmetric

Sines

Transform is Imaginary*

fe(t) = fe(-t)

Symmetric

Cosines

Transform is Real*

OddEven

Does the FT Always Exist?
Yes, if the signal has a finite sum (area under the curve):

For some non-infinite bound B.

If f(t) is periodic, only need to test over one period P:

What about a constant function?

∫
∞

∞−

≤ Bdttf)(

∫ ≤
P

Bdttf
0

)(

Periodic Signals on a Grid
• Periodic signals with period N:

Underlying frequencies must also repeat over the period N
Each component frequency must be a multiple of the
frequency of the periodic signal itself:

• If the signal is discrete:
Highest frequency is one unit: period repeats after a single sample

No more than N components

 ,3 ,2 ,1
NNN

N
N

NNN
 ,3 ,2 ,1

Discrete Fourier Transform (DFT)
If we treat a discrete signal with N samples as one period of an
infinite periodic signal, then

and

Note: For a periodic function, the discrete Fourier transform is the same as
the continuous transform

We give up nothing in going from a continuous to a discrete
transform as long as the function is periodic

∑
−

=

π−
=

1

0

2
][1][

N

t

N
sti

etf
N

sF

∑
−

=

π
=

1

0

2
][][

N

s

N
sti

esFtf

Normalizing DFTs: Conventions
InverseTransformBasis

Function

∑
−

=

π−
=

1

0

2
][1][

N

t

N
sti

etf
N

sF

N
sti

e
N

π21

N
sti

e
N

π21

∑
−

=

π−
=

1

0

2
][1][

N

t

N
sti

etf
N

sF

∑
−

=

π−
=

1

0

2
][][

N

t

N
sti

etfsF

∑
−

=

π
=

1

0

2
][][

N

s

N
sti

esFtf

∑
−

=

π
=

1

0

2
][1][

N

s

N
sti

esF
N

tf

∑
−

=

π
=

1

0

2
][1][

N

s

N
sti

esF
N

tf

N
sti

e
π2

Discrete Fourier Transform (DFT)

Questions:
What would the code for the discrete Fourier transform look
like?
What would its computational complexity be?

∑
−

=

π−
=

1

0

2
][1][

N

t

N
sti

etf
N

sF

∑
−

=

π
=

1

0

2
][][

N

s

N
sti

esFtf

Fast Fourier Transform

If we let

the Discrete Fourier Transform can be written

If N is a multiple of 2, N = 2M for some positive integer M,
substituting 2M for N gives

N
i

N eW
π−

=
2

∑
−

=
⋅=

1

0
][1][

N

t

st
NWtf

N
sF

∑
−

=
⋅=

12

0
2][

2
1][

M

t

st
MWtf

M
sF

developed by Tukey and Cooley in 1965

Fast Fourier Transform
Separating out the M even and M odd terms,

Notice that

and

So,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅++⋅= ∑ ∑
−

=

−

=

+
1

0

1

0

)12(
2

)2(
2]12[1]2[1

2
1][

M

t

M

t

ts
M

ts
M Wtf

M
Wtf

M
sF

st
M

M
sti

M
tsi

ts
M WeeW ===

π−π− 2
2

)2(2
)2(

2

s
M

st
M

M
si

M
sti

M
tsi

ts
M WWeeeW 2

2
22

2
)12(2

)12(
2 ===

π−π−+π−
+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅++⋅= ∑ ∑
−

=

−

=

1

0

1

0
2]12[1]2[1

2
1][

M

t

M

t

s
M

st
M

st
M WWtf

M
Wtf

M
sF

Fast Fourier Transform

Can be written as

We can use this for the first M terms of the Fourier transform of
2M items, then we can re-use these values to compute the last M
terms as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅++⋅= ∑ ∑
−

=

−

=

1

0

1

0
2]12[1]2[1

2
1][

M

t

M

t

s
M

st
M

st
M WWtf

M
Wtf

M
sF

{ }s
Moddeven WsFsFsF 2)()(

2
1][+=

{ }s
Moddeven WsFsFMsF 2)()(

2
1][−=+

Fast Fourier Transform
If M is itself a multiple of 2, do it again!

If N is a power of 2, recursively subdivide until you have one
element, which is its own Fourier Transform

ComplexSignal FFT(ComplexSignal f) {
if (length(f) == 1) return f;

M = length(f) / 2;
W_2M = e^(-I * 2 * Pi / M) // A complex value.

even = FFT(EvenTerms(f));
odd = FFT(OddTerms(f));

for (s = 0; s < M; s++) {
result[s] = even[s] + W_2M^s * odd[s];
result[s+M] = even[s] – W_2M^s * odd[s];

}
}

Fast Fourier Transform
Computational Complexity:

Remember: The FFT is just a faster algorithm for computing the DFT — it
does not produce a different result

O(N log N)Fast Fourier Transform

O(N2)Discrete Fourier Transform

Fourier Pairs
Use the Fourier Transform, denoted F, to get the weights for
each harmonic component in a signal:

And use the Inverse Fourier Transform, denoted F–1, to
recombine the weighted harmonics into the original signal:

We write a signal and its transform as a Fourier Transform pair:

∫
∞

∞−

−== dtetftfsF sti π2)())(()(F

∫
∞

∞−

− == dsesFsFtf sti π21)())(()(F

)()(sFtf ↔

Sinusoids

½[δ(s + ω) + δ(s – ω)]

½[δ(s + ω) - δ(s – ω)]i

cos(2πωt)

sin(2πωt)

Frequency Domain
F(s)

Spatial Domain
f(t)

Constant Functions

δ (s)

a δ (s)

1

a

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Delta (Impulse) Function

1δ (t)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Square Pulse

Πa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

sin(2)2 sinc(2) asa as
s
π

π
=

Adapted from http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html

Sinc Function
• The Fourier transform of a square function, Πa(t) is the (normalized) sinc

function:

• To show this, we substitute the value of Πa(t) = 1 for – a < t < a into the
equation for the continuous FT, i.e.

• We use a substitution. Let u = -i2πst, du = -i2πs dt and then dt = du / -i2πst

[]

2
2 2

2

1 1()
2 2

1 cos(2) sin(2) cos(2) sin(2)
2
1 1[2 sin(2)] sin(2) 2 sinc(2).
2

i sa
u i as i as

i sa

F s e du e e
i s i s

as i as as i as
i s

i as as a as
i s s

π
π π

ππ π

π π π π
π

π π
π π

−
−⎡ ⎤= = − =⎣ ⎦− −

− + − − − =
−

− = =
−

∫

2()
a

i st

a

F s e dtπ−

−

= ∫

sin()sinc() xx
x
π

π
=

Triangle

a sinc2(as)Λa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

t0

1/ 2 ()t∆
1

1/2-1/2 s0

21/2 sinc (/ 2)s
0.5

Comb (Shah) Function

δ (t mod 1/h)combh(t) = δ (t mod h)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Gaussian

Frequency Domain
F(s)

Spatial Domain
f(t)

2se π−2te π−

()2se π σ−
2t

e
π

σ
⎛ ⎞− ⎜ ⎟
⎝ ⎠

Gaussian (cont.)
• The Fourier transform of a Gaussian function is given by

Note that the integral in the last equation = 1, so that a Gaussian
transforms to another Gaussian.

2xe π−

2

2

2 2 2

2 2

2 2

2

(2)

(2)

()

()

; [, / 1]

x i xs

x ixs

s x ixs s

s x is

s y

F s e e dx

e dx

e e dx

e e dx y x is dy dx

e e dy

π π

π

π π

π π

π π

∞
− −

−∞

∞
− +

−∞

∞
− − + −

−∞

∞
− − +

−∞

∞
− −

−∞

=

=

=

= ← + =

=

∫

∫

∫

∫

∫

Graphical Picture

http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html

()2se π σ−
2t

e
π

σ
⎛ ⎞− ⎜ ⎟
⎝ ⎠

Common Fourier Transform Pairs

2a sinc(2as)Sinc FunctionΠa(t)Square Pulse

a sinc2(as)Sinc SquaredΛa(t)Triangle

GaussianGaussian

1Unit Functionδ (t)Delta Function

δ (t mod 1/h)Combδ (t mod h)Comb

Delta Function

Delta Function

Shifted Deltas

Shifted Deltas

Constant

Unit Function

Sine

Cosine ½[δ (s + ω) + δ (s – ω)]cos(2πωt)

½[δ (s + ω) - δ (s – ω)]isin(2πωt)

δ (s)1

a δ (s)a

Frequency Domain: F(s)Spatial Domain: f(t)

2se π−2te π−

FT Properties: Addition Theorem
Adding two functions together adds their Fourier Transforms:

F(f + g) = F(f) + F(g)

Multiplying a function by a scalar constant multiplies its Fourier
Transform by the same constant:

F(a f) = aF(f)

Consequence: Fourier Transform is a linear transformation!

FT Properties: Shift Theorem
Translating (shifting) a function leaves the magnitude unchanged
and adds a constant to the phase

If f2(t) = f1(t – a)

F1 = F(f1)
F2 = F(f2)

then
|F2| = |F1|

φ (F2) = φ (F1) - 2πsa

Intuition: magnitude tells you “how much”,
phase tells you “where”

FT Properties: Similarity Theorem
Scaling a function’s abscissa (domain or horizontal axis) inversely
scales the both magnitude and abscissa of the Fourier transform.

If f2(t) = f1(a t)

F1 = F(f1)
F2 = F(f2)

then
F2(s) = (1/|a|) F1(s / a)

FT Properties: Rayleigh’s Theorem

Total sum of squares is the same in either domain:

∫∫
∞

∞−

∞

∞−

= dssFdttf 22)()(

The Fourier Convolution Theorem
Let F, G, and H denote the Fourier Transforms of signals f, g,
and h respectively

g = f * h implies G = F H

g = f h implies G = F * H

Convolution in one domain is multiplication in the other and vice
versa

Convolution in the Frequency Domain
One application of the Convolution Theorem is that we can
perform time-domain convolution using frequency domain
multiplication:

f * g = F–1(F(f) F(g))

How does the computational complexity of doing convolution
compare to the forward and inverse Fourier transform?

Deconvolution
If G = FH, can’t you reverse the process by F = G / H?

This is called deconvolution: the “undoing” of convolution

Problem: most systems have noise, which limits deconvolution

2-D Continuous Fourier Transform
Basic functions are sinusoids with frequency u in one direction
times sinusoids with frequency v in the other:

Same process for the inverse transform:

∫ ∫
∞

∞−

∞

∞−

+−= dydxeyxfvuF vyuxi),(),()(2π

∫ ∫
∞

∞−

∞

∞−

+= dydxevuFyxf vyuxi),(),()(2π

2-D Discrete Fourier Transform
For an N × M image, the basis functions are:

Same process for the inverse transform:

∑ ∑
−

=

−

=

+=
1

0

1

0

)//(2],[],[
N

u

M

v

MvyNuxievuFyxf π

∑ ∑
−

=

−

=

+−=
1

0

1

0

)//(2],[1],[
N

x

M

y

MvyNuxieyxf
NM

vuF π

)//(2

/2/2
,],[

MvyNuxi

MvyiNuxi
vu

e

eeyxh
+−=

=
π

ππ

Interpreting the 2-D Fourier Transform
The point (u, v) in the frequency domain corresponds to the basis
function with:

Frequency u in x Frequency |(u, v)|

and OR in the

Frequency v in y Direction φ (u, v)

This follows from rotational invariance

Properties
All other properties of 1-D signals apply to 2-D (and 3D!)

Linearity
Shift
Scaling
Rayleigh’s Theorem
Convolution Theorem

Rotation
Rotating a 2-D function rotates it’s Fourier Transform

If
f2 = rotateθ(f1)

= f1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

F1 = F(f1)

F2 = F(f2)

then
F2(s) = F1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

i.e., the Fourier Transform is rotationally invariant.

Rotation Invariance (sort of)

© http://mail.udlap.mx/~oldwall/docencia/IMAGENES/chapter2/image_232_IS548.html

needs
more
boundary
padding!

Transforms of Separable Functions
If

f(x, y) = f1(x) f2(y)

the function f is separable and its Fourier Transform is also
separable:

F(u,v) = F1(u) F2(v)

Linear Separability of the 2-D FT
The 2-D Fourier Transform is linearly separable: the Fourier Transform
of a two-dimensional image is the 1-D Fourier Transform of the rows followed by
the 1-D Fourier Transforms of the resulting columns (or vice versa)

Mvyi
M

y

N

x

Nuxi

Mvyi
N

x

M

y

Nuxi

N

x

M

y

MvyNuxi

eeyxf
NM

eeyxf
NM

eyxf
NM

vuF

/2
1

0

1

0

/2

/2
1

0

1

0

/2

1

0

1

0

)//(2

],[1 1

],[1

],[1],[

ππ

ππ

π

−
−

=

−

=

−

−
−

=

−

=

−

−

=

−

=

+−

∑ ∑

∑ ∑

∑ ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

=

Convolution using FFT
Convolution theorem says

f *g = F –1(F(f) F(g))

Can do either:

Direct Space Convolution

FFT, multiplication, and inverse FFT

Computational breakeven point: about 9 × 9 kernel

2-D Convolution, DFT, and FFT

Direct Space Convolution O(N4)

DFT O(N4)

DFT using separability O(N3)

FFT using separability O(N2 log N)

Spatial Frequencies
• If the image makes gradual transitions, it only requires low-

frequency sinusoids

• If the image make rapid transitions, it requires high-frequency
sinusoids

• Places with low spatial frequency content: smooth regions

• Places with high spatial frequency content: edges, texture

Correlation
Convolution is

Correlation is

∫
∞

∞−

−= τττ dtgftgtf)()()(*)(

∫
∞

∞−

+=− τττ dtgftgtf)()()(*)(

Correlation in the Frequency Domain
Convolution

f (t) * g(t) ↔ F(s) G(s)

Correlation

f (t) * g(-t) ↔ F(s) G*(s)

Template “Convolution”

•Actually, is a correlation method
•Goal: maximize correlation between target and probe image
•Here: only translations allowed but rotations also possible

target probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html

Particle Picking

•Use spherical, or rotationally averaged probes
•Goal: maximize correlation between target and probe image

target probe

microscope image of latex spheres

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html

Autocorrelation
Autocorrelation is the correlation of a function with itself:

f (t) * f(-t)

Useful to detect self-similarities or repetitions / symmetry within
one image!

Power Spectrum
The power spectrum of a signal is the Fourier Transform of its
autocorrelation function:

P(s) = F(f (t) * f (-t))

= F(s) F*(s)

= |F(s)|2

It is also the squared magnitude of the Fourier transform of the
function

It is entirely real (no imaginary part).

Useful for detecting periodic patterns / texture in the image.

Use of Power Spectrum in Filtering

Original with noise patterns Power spectrum showing noise spikes

Mask to remove periodic noise Inverse FT with periodic noise removed
© http://www.reindeergraphics.com/tutorial/chap4/fourier13.html

Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon, 97331

Resources

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapter 10
John C. Russ, The Image Processing Handbook, Chapter 5

