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Frequency Analysis
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Here, we write a square 
wave as a sum of sine 
waves:



Frequency Analysis
• To use transfer functions, we must first decompose a signal into its component 

frequencies

• Basic idea: any signal can be written as the sum of phase-shifted sines and 
cosines of different frequencies

• The mathematical tool for doing this is the Fourier Transform

© www.dai.ed.ac.uk/HIPR2/ fourier.htm
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General Idea of Transforms
Given an orthonormal (orthogonal, unit length) basis set of vectors 
{ēk}:

Any vector in the space spanned by this basis set can be 
represented as a weighted sum of those basis vectors:

To get a vector’s weight relative to a particular basis vector ēk:

Thus, the vector can be transformed into the weights ak

Likewise, the transformation can be inverted by turning the 
weights back into the vector
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Linear Algebra with Functions
The inner (dot) product of two vectors is the sum of the point-
wise multiplication of each component:

Can’t we do the same thing with functions?

Functions satisfy all of the linear algebraic requirements of 
vectors
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Transforms with Functions
Just as we transformed vectors, we can also transform functions:

Inverse

Transform

Functions {ek(t)}Vectors {ēk[j]}
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Basis Set: Generalized Harmonics
The set of generalized harmonics we discussed earlier form an 
orthonormal basis set for functions:

{ei2πst}

where each harmonic has a different frequency s

Remember:

ei2πst = cos(2πst) + i sin(2πst)

The real part is a cosine of frequency s
The imaginary part is a sine of frequency s



The Fourier Series

Inverse

Transform

Harmonics {ei2πst}All Functions {ek(t)}
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The Fourier Transform
Most tasks need an infinite number of basis functions 
(frequencies), each with their own weight F(s):

Inverse

Transform

Fourier TransformFourier Series
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The Fourier Transform
To get the weights (amount of each frequency):F

To convert weights back into a signal (invert the transform):

F(s) is the Fourier Transform of f(t): F(f(t)) = F(s)

f(t) is the Inverse Fourier Transform of F(s): F-1(F(s)) = f(t)
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Notation
Let F denote the Fourier Transform:

F = F(f )

Let F-1 denote the Inverse Fourier Transform:

f = F-1(F )



How to Interpret the Weights F(s)
The weights F(s) are complex numbers:

How much of a sinusoid of frequency s you need

What phase that sinusoid needs to be

Magnitude

Phase

How much of a cosine of frequency s you need

How much of a sine of frequency s you need

Real part

Imaginary part



Magnitude and Phase
Remember: complex numbers can be thought of in two 
ways: (real, imaginary) or (magnitude, phase)

Magnitude:

Phase:
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Odd and Even Functions

*for real-valued signals.

Any function f(t) can be broken into even and odd parts:

f(t) = fe(t) + fo(t) = ½[f(t) + f(-t)] + ½[f(t) - f(-t)]

fe fo

fo(t) = -fo(-t)

Anti-symmetric

Sines

Transform is Imaginary*

fe(t) = fe(-t)

Symmetric

Cosines

Transform is Real*

OddEven



Does the FT Always Exist?
Yes, if the signal has a finite sum (area under the curve):

For some non-infinite bound B.

If f(t) is periodic, only need to test over one period P:

What about a constant function?

∫
∞

∞−

≤ Bdttf )(

∫ ≤
P

Bdttf
0

)(



Periodic Signals on a Grid
• Periodic signals with period N:

Underlying frequencies must also repeat over the period N
Each component frequency must be a multiple of the 
frequency of the periodic signal itself:

• If the signal is discrete:
Highest frequency is one unit: period repeats after a single sample

No more than N components

  ,3  ,2  ,1
NNN

N
N

NNN
    ,3  ,2  ,1



Discrete Fourier Transform (DFT)
If we treat a discrete signal with N samples as one period of an 
infinite periodic signal, then

and

Note: For a periodic function, the discrete Fourier transform is the same as 
the continuous transform

We give up nothing in going from a continuous to a discrete 
transform as long as the function is periodic
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Normalizing DFTs: Conventions
InverseTransformBasis 

Function
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Discrete Fourier Transform (DFT)

Questions:
What would the code for the discrete Fourier transform look 
like?
What would its computational complexity be?
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Fast Fourier Transform

If we let

the Discrete Fourier Transform can be written

If N is a multiple of 2, N = 2M for some positive integer M, 
substituting 2M for N gives

N
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Fast Fourier Transform
Separating out the M even and M odd terms,

Notice that

and

So,
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Fast Fourier Transform

Can be written as

We can use this for the first M terms of the Fourier transform of 
2M items, then we can re-use these values to compute the last M
terms as follows:
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Fast Fourier Transform
If M is itself a multiple of 2, do it again!

If N is a power of 2, recursively subdivide until you have one 
element, which is its own Fourier Transform

ComplexSignal FFT(ComplexSignal f) {
if (length(f) == 1) return f;

M = length(f) / 2;
W_2M = e^(-I * 2 * Pi / M)  // A complex value.

even = FFT(EvenTerms(f));
odd  = FFT( OddTerms(f));

for (s = 0; s < M; s++) {
result[s  ] = even[s] + W_2M^s * odd[s];
result[s+M] = even[s] – W_2M^s * odd[s];

}
}



Fast Fourier Transform
Computational Complexity:

Remember: The FFT is just a faster algorithm for computing the DFT — it 
does not produce a different result

O(N log N)Fast Fourier Transform

O(N2)Discrete Fourier Transform



Fourier Pairs
Use the Fourier Transform, denoted F, to get the weights for 
each harmonic component in a signal:

And use the Inverse Fourier Transform, denoted F–1, to 
recombine the weighted harmonics into the original signal:

We write a signal and its transform as a Fourier Transform pair:
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Sinusoids

½[δ(s + ω) + δ(s – ω)]

½[δ(s + ω) - δ(s – ω)]i

cos(2πωt)

sin(2πωt)

Frequency Domain
F(s)

Spatial Domain
f(t)



Constant Functions

δ (s)

a δ (s)

1

a

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Delta (Impulse) Function

1δ (t)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Square Pulse

Πa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

sin(2 )2  sinc(2 ) asa as
s
π

π
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Adapted from http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html



Sinc Function 
• The Fourier transform of a square function, Πa(t) is the (normalized) sinc

function:

• To show this, we substitute the value of Πa(t) = 1 for – a < t < a into the 
equation for the continuous FT, i.e.

• We use a substitution. Let u = -i2πst, du = -i2πs dt and then dt = du / -i2πst
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Triangle

a sinc2(as)Λa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

t0

1/ 2 ( )t∆
1

1/2-1/2 s0

21/2 sinc ( / 2)s
0.5



Comb (Shah) Function

δ (t mod 1/h)combh(t) = δ (t mod h)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Gaussian

Frequency Domain
F(s)

Spatial Domain
f(t)
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Gaussian (cont.)
• The Fourier transform of a Gaussian function            is given by

Note that the integral in the last equation = 1, so that a Gaussian 
transforms to another Gaussian. 
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Graphical Picture

http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html
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Common Fourier Transform Pairs

2a sinc(2as)Sinc FunctionΠa(t)Square Pulse

a sinc2(as)Sinc SquaredΛa(t)Triangle

GaussianGaussian

1Unit Functionδ (t)Delta Function

δ (t mod 1/h)Combδ (t mod h)Comb

Delta Function

Delta Function

Shifted Deltas

Shifted Deltas

Constant

Unit Function

Sine

Cosine ½[δ (s + ω) + δ (s – ω)]cos(2πωt)

½[δ (s + ω) - δ (s – ω)]isin(2πωt)

δ (s)1

a δ (s)a

Frequency Domain: F(s)Spatial Domain: f(t)

2se π−2te π−



FT Properties: Addition Theorem
Adding two functions together adds their Fourier Transforms:

F(f + g) = F(f) + F(g) 

Multiplying a function by a scalar constant multiplies its Fourier 
Transform by the same constant:

F(a f) = aF(f)

Consequence: Fourier Transform is a linear transformation!



FT Properties: Shift Theorem
Translating (shifting) a function leaves the magnitude unchanged 
and adds a constant to the phase

If f2(t) = f1(t – a)

F1 = F(f1) 
F2 = F(f2) 

then
|F2| = |F1|

φ (F2) = φ (F1) - 2πsa

Intuition: magnitude tells you “how much”,
phase tells you “where”



FT Properties: Similarity Theorem
Scaling a function’s abscissa (domain or horizontal axis) inversely 
scales the both magnitude and abscissa of the Fourier transform.

If f2(t) = f1(a t)

F1 = F(f1) 
F2 = F(f2) 

then
F2(s) = (1/|a|) F1(s / a)



FT Properties: Rayleigh’s Theorem

Total sum of squares is the same in either domain:
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The Fourier Convolution Theorem
Let F, G, and H denote the Fourier Transforms of signals f, g, 
and h respectively

g = f * h implies G = F H

g = f h implies G = F * H

Convolution in one domain is multiplication in the other and vice 
versa



Convolution in the Frequency Domain
One application of the Convolution Theorem is that we can 
perform time-domain convolution using frequency domain 
multiplication:

f * g = F–1(F(f ) F(g))

How does the computational complexity of doing convolution 
compare to the forward and inverse Fourier transform?



Deconvolution
If G = FH, can’t you reverse the process by F = G / H?

This is called deconvolution: the “undoing” of convolution

Problem: most systems have noise, which limits deconvolution



2-D Continuous Fourier Transform
Basic functions are sinusoids with frequency u in one direction 
times sinusoids with frequency v in the other:

Same process for the inverse transform:
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2-D Discrete Fourier Transform
For an N × M image, the basis functions are:

Same process for the inverse transform:
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Interpreting the 2-D Fourier Transform
The point (u, v) in the frequency domain corresponds to the basis 
function with:

Frequency u in x Frequency |(u, v)|

and OR in the

Frequency v in y Direction φ (u, v)

This follows from rotational invariance



Properties
All other properties of 1-D signals apply to 2-D (and 3D!)

Linearity
Shift
Scaling
Rayleigh’s Theorem
Convolution Theorem



Rotation
Rotating a 2-D function rotates it’s Fourier Transform

If
f2 = rotateθ(f1)

= f1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

F1 = F(f1) 

F2 = F(f2)

then
F2(s) = F1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

i.e., the Fourier Transform is rotationally invariant.



Rotation Invariance (sort of)

© http://mail.udlap.mx/~oldwall/docencia/IMAGENES/chapter2/image_232_IS548.html

needs
more
boundary
padding!



Transforms of Separable Functions
If

f(x, y) = f1(x) f2(y)

the function f is separable and its Fourier Transform is also 
separable:

F(u,v) = F1(u) F2(v)



Linear Separability of the 2-D FT
The 2-D Fourier Transform is linearly separable: the Fourier Transform 
of a two-dimensional image is the 1-D Fourier Transform of the rows followed by 
the 1-D Fourier Transforms of the resulting columns (or vice versa)
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Convolution using FFT
Convolution theorem says

f *g = F –1(F(f ) F(g))

Can do either:

Direct Space Convolution

FFT, multiplication, and inverse FFT

Computational breakeven point: about 9 × 9 kernel



2-D Convolution, DFT, and FFT

Direct Space Convolution O(N4)

DFT O(N4)

DFT using separability O(N3)

FFT using separability O(N2 log N)



Spatial Frequencies
• If the image makes gradual transitions, it only requires low-

frequency sinusoids

• If the image make rapid transitions, it requires high-frequency 
sinusoids

• Places with low spatial frequency content: smooth regions

• Places with high spatial frequency content: edges, texture



Correlation
Convolution is

Correlation is
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Correlation in the Frequency Domain
Convolution 

f (t) * g(t) ↔ F(s) G(s) 

Correlation 

f (t) * g(-t) ↔ F(s) G*(s) 



Template “Convolution”

•Actually, is a correlation method
•Goal: maximize correlation between target and probe image
•Here: only translations allowed but rotations also possible

target         probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Particle Picking

•Use spherical, or rotationally averaged probes
•Goal: maximize correlation between target and probe image

target            probe

microscope image of latex spheres

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Autocorrelation
Autocorrelation is the correlation of a function with itself:

f (t) * f(-t)

Useful to detect self-similarities or repetitions / symmetry within 
one image!



Power Spectrum
The power spectrum of a signal is the Fourier Transform of its 
autocorrelation function:

P(s) = F(f (t) * f (-t))

= F(s) F*(s)

= |F(s)|2

It is also the squared magnitude of the Fourier transform of the
function

It is entirely real (no imaginary part).

Useful for detecting periodic patterns / texture in the image.



Use of Power Spectrum in Filtering

Original with noise patterns            Power spectrum showing noise spikes

Mask to remove periodic noise       Inverse FT with periodic noise removed
© http://www.reindeergraphics.com/tutorial/chap4/fourier13.html



Figure and Text Credits 

Text and figures for this lecture were adapted in part from the following source, in 
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon,  97331



Resources 

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapter 10
John C. Russ, The Image Processing Handbook, Chapter 5


