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Invariance
If some operation on a signal commutes with a 
particular transformation, that operation is invariant 
to that transformation:

U(Tf) = T(Uf)

The operation U is invariant to transformation T



Examples of Invariance
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Linearity: Revisited

A function f is linear iff (if and only if):

f(ax + by) = af(x) + bf(y)

This can be broken down into two components

1. f(ax) = af(x)                (scalar multiplication)

2. f(x + y) = f(x) + f(y)   (addition)



Shift Invariance
Shift invariance: an operation is invariant to translation

Implication: shifting the input produces the same output 
with an equal shift

if  x(t) → y(t)

then  x(t + T) → y(t + T)



Systems
Linearity and shift invariance are nice properties for 
a signal-processing operation to have

– Input devices

– Output devices

– Processing

In signal processing, a transformation that is linear 
and shift invariant is called a system.



Reality Check
No physical device is really a system:

• Linearity is limited by saturation

• Shift invariance is limited by sampling duration or field 
of view

• Random noise isn’t linear



Impulses
One way of probing what a system does is to test it on a 
single input point (a single spike in the signal, a single 
point of light, etc.)

Mathematically, a perfect single-point input is written as:

δ(t) = 

and

δ(t)dt = 1

This is called the Dirac delta function

⎧
⎨
⎩

∞ if t = 0
0 otherwise

∞

⌠
⌡
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Impulses (cont.)

Multiplying a delta function by a constant 
multiplies the integrated area:

a δ(t)dt = a
∞

⌠
⌡
-∞



Impulse Response
Because a system is shift-invariant, it responds the same 
everywhere:

δ(t) → h(t)

implies

δ(t + T) → h(t + T)

This response h(t) is called the impulse response or point 
spread function



Impulse Response
Because a system is linear, the response to a multiplied 
impulse is the same as the multiple times the response:

δ(t) → h(t)

implies

a δ(t) → a h(t)



Impulse Response
Because a system is linear, the response to two impulses is 
the same as the sum of the two responses individually:

δ(t) → h(t)

δ(t + T) → h(t + T)

Implies

δ(t) + δ(t + T) → h(t) + h(t + T)



Impulse Response
Putting it all together:

δ(t) → h(t)

implies

a δ(t) + b δ(t + T) → a h(t) + b h(t + T)

Implication: If you know the impulse response at any point, 
you know everything there is to know about the system!



Complex Numbers: Review

A complex number is one of the form:

a + bi

where

i = √-1
a: real part

b: imaginary part



Complex Arithmetic
When you add two complex numbers, the real and 
imaginary parts add independently:

(a + bi) + (c + di) = (a + c) + (b + d)i

When you multiply two complex numbers, you 
cross-multiply them like you would polynomials:

(a + bi) × (c + di) = ac + a(di) + (bi)c + (bi)(di)

= ac + (ad + bc)i + (bd)(i2)

= ac + (ad + bc)i - bd

= (ac - bd) + (ad + bc)i



Polynomial Multiplication

p1(x) = 3 x2 + 2 x + 4
p2(x) = 2 x2 + 5 x + 1

p1(x) p2(x) = ____x4 + ____x3 + ____x2 + ____x + ____



The Complex Plane
Complex numbers can be thought of as vectors in the 
complex plane with basis vectors (1, 0) and (0, i):

Real

Imaginary

1
-1

i

-i

i



Magnitude and Phase
The length of a complex number is its magnitude:

|a + bi| = √a2 + b2

The angle from the real-number axis is its phase:

φ (a + bi) = tan-1(b / a)

When you multiply two complex numbers, their 
magnitudes multiply

|z1z2| = |z1||z2|

And their phases add

φ (z1z2) = φ (z1) + φ (z1)



The Complex Plane: Magnitude and Phase
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Complex Conjugates
If z = a + bi is a complex number, then its complex conjugate is:

z* = a - bi

The complex conjugate z* has the same magnitude but opposite phase

When you add z to z*, the imaginary parts cancel and you get a real 
number:

(a + bi) + (a - bi) = 2a

When you multiply z to z*, you get the real number equal to |z|2:

(a + bi)(a - bi) = a2 – (bi)2 = a2 + b2



Complex Division
If z1 = a + bi, z2 = c + di, z = z1 / z2, 
the division can be accomplished by multiplying the numerator 
and denominator by the complex conjugate of the denominator:

2 2 2 2

( )( )
( )( )
a bi c di ac bd bc adz i
c di c di c d c d

+ − + −⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟+ − + +⎝ ⎠ ⎝ ⎠



Euler’s Formula

• Remember that under complex multiplication:
– Magnitudes multiply
– Phases add

• Under what other quantity/operation does multiplication result in 
an addition?
– Exponentiation:  cacb = ca + b (for some constant c)

• If we have two numbers of the form m·ca (where c is some 
constant), then multiplying we get:

(m·ca ) (n·cb) = m·n·ca + b

• What constant c can represent complex numbers?



Euler’s Formula
• Any complex number can be represented using Euler’s 

formula:
z = |z|eiφ (z) = |z|cos(φ ) + |z|sin(φ )i = a + bi

Real

Imaginary

1
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-i
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a
φ

a = |z|cos(φ )
b = |z|sin(φ )



Powers of Complex Numbers
Suppose that we take a complex number

z = |z|ei φ (z)

and raise it to some power
zn = [|z|ei φ (z)]n

= |z|n ei n φ (z)

zn has magnitude |z|n and phase n φ (z)



Real

Imaginary

1
-1

i

-i

Powers of Complex Numbers: Example

• What is in for various n?

, 4n = 0

, 5n = 1

n = 2, 6 , 8

n = 3, 7
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Powers of Complex Numbers: Example

• What is (eiπ/4)n for various n?

, 8n = 0

, 9

n = 2

n = 4

n = 6

n = 1n = 3

n = 5
n = 7



Real

Imaginary

1
-1

i

-i

Harmonic Functions
• What does x(t) = eiωt look like?
• x(t) is a harmonic function (a building block for later analysis)

eiωt

Angular frequency

Time



Harmonic Functions as Sinusoids

sin(ωt)cos(ωt)

ℑ(eiωt)ℜ(eiωt)
Imaginary PartReal Part



Harmonics and Systems
If we present a harmonic input (function)

x1(t) = eiωt

to a shift-invariant linear system, it produces the response

x1(t) → y1(t)

y1(t) = K(ω, t) x1(t) = K(ω, t) eiωt

where, for now, we simply define

tie
tytK ωω )(),( 1=



Harmonics and Systems: Shifted Input

Suppose we create a harmonic input (function) by 
shifting the original input

x2(t) = x1(t – T) = eiω(t – T)

The response, x2(t) → y2(t), to this shifted input is

y2(t) = K(ω, t – T) x2(t) = K(ω, t – T) eiω(t – T)



Harmonics and Systems: Shifted Input

However, note that

x2(t) = eiω(t – T) = eiωt e–iωT = x1(t) e–iωT

Thus, the response can be written

x2(t) → y1(t) e–iωT

y2(t) = y1(t) e–iωT = K(ω, t) x1(t) e–iωT = 

K(ω, t) x2(t)



Harmonics and Systems: Shifted Input

Now we have both

y2(t) = K(ω, t) x2(t)

y2(t) = K(ω, t – T) x2(t)
Thus, 

K(ω, t – T) = K(ω, t) 
So, K is just a constant function with respect to t:

K(ω)



Harmonics and Systems
Thus, for any harmonic function

x(t) = eiωt

we have

x(t) → y(t)

y(t) = K(ω) x(t) = K(ω) eiωt

Implication: When a system (a shift-invariant linear transformation)
is applied to a harmonic signal, the result is the same harmonic
signal multiplied by a constant that depends only on the frequency



Transfer Functions
We now have a second way to characterize systems:
1: If you know the impulse response at any point, you know 

everything there is to know about the system 
2: The function K(ω) defines the degree to which harmonic inputs 

transfer to the output
K(ω) is the called the transfer function



Transfer Functions
Expressing K(ω) in polar (magnitude-phase) form:

K(ω) = A(ω) eiφ(ω)

Recall that the magnitudes multiply and the phases add:
K(ω) eiωt = A(ω) ei[ωt + φ(ω)]

A(ω) is called the Modulation Transfer Function (MTF)
– Magnitude of the transfer function
– Indicates how much the system amplifies or attenuates input

φ(w) is called the Phase Transfer Function (PTF)
– Phase of the transfer function
– Only effect is to shift the time origin of the input function



Impulse Response
Remember that we can entirely characterize a system by 
its impulse response:

δ (t) → h(t)

Problem: given an input signal x(t), how do we 
determine the output y(t)



Linearity and Shift Invariance
Because a system is linear:

a δ (t) → a h(t)

Because a system is shift invariant:
δ (t – k) → h(t – k)



Response to an Entire Signal
A signal x(t) can be thought of as the sum of a lot of 
weighted, shifted impulse functions:

where 
− δ (τ – t) is the delta function at τ
– x(t) is the weight of that delta function

(Read the integral simply as summation)

( ) ( )x t x t dτ δ( τ) τ
∞

−∞

= −∫



Response to an Entire Signal (cont.)

Because of linearity, each impulse goes through the 
system separately:

x(τ) δ (t – τ) → x(τ) h(t – τ)
This means

( ) ( )x t d x h t dτ δ( τ) τ τ ( τ) τ
∞ ∞

−∞ −∞

− → −∫ ∫



Response to an Entire Signal (cont.)

So,

This operation is called the convolution of x and h

( ) ( )y t x h t dτ ( τ) τ
∞

−∞

= −∫



Convolution
Convolution of an input x(t) with the impulse response 
h(t) is written as

x(t) * h(t)

That is to say,

ττ)(τ dthxthtx ∫
∞

∞−

−=∗ )()()(



Response to an Entire Signal
So, the response of a system with impulse response h(t)
to input x(t) is simply the convolution of x(t) and h(t):

ττ)(τ dthxthtxtytx ∫
∞

∞−

−=∗=→ )()()()()(



Convolution of Discrete Functions
For a discrete function x[j] and impulse response h[j]:

∑ −⋅=∗
k

kjhkxjhjx ][][][][



One Way to Think of Convolution

Think of it this way:

– Shift a copy of h to each position t (or discrete 
position k)

– Multiply by the value at that position x(t) (or discrete 
sample x[k])

– Add shifted, multiplied copies for all t (or discrete k)

∑ −⋅=∗
k

kjhkxjhjx ][][][][

ττ)(τ dthxthtx ∫
∞

∞−

−=∗ )()()(



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0]= [ __ __ __ __ __ __ __ __ __ ]
x[1] h[j – 1]= [ __ __ __ __ __ __ __ __ __ ]
x[2] h[j – 2]= [ __ __ __ __ __ __ __ __ __ ]
x[3] h[j – 3]= [ __ __ __ __ __ __ __ __ __ ]
x[4] h[j – 4]= [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]

Σ
k



Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]
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Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0]= [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1]= [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2]= [ __ __ __ __ __ __ __ __ __ ]
x[3] h[j – 3]= [ __ __ __ __ __ __ __ __ __ ]
x[4] h[j – 4]= [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]
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Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0]= [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1]= [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2]= [ __ __ 3 6 9 12 15 __ __ ]
x[3] h[j – 3]= [ __ __ __ __ __ __ __ __ __ ]
x[4] h[j – 4]= [ __ __ __ __ __ __ __ __ __ ]

x[j] * h[j] = x[k] h[j – k]

= [ __ __ __ __ __ __ __ __ __ ]
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x[3] h[j – 3]= [ __ __ __ 1 2 3 4 5 __ ]
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Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0]= [ 1 2 3 4 5 __ __ __ __ ]
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Example: Convolution – One way
x[j] = [ 1 4 3 1 2 ]
h[j] = [ 1 2 3 4 5 ]

x[0] h[j – 0]= [ 1 2 3 4 5 __ __ __ __ ]
x[1] h[j – 1]= [ __ 4 8 12 16 20 __ __ __ ] 
x[2] h[j – 2]= [ __ __ 3 6 9 12 15 __ __ ]
x[3] h[j – 3]= [ __ __ __ 1 2 3 4 5 __ ]
x[4] h[j – 4]= [ __ __ __ __ 2 4 6 8 10 ]

x[j] * h[j] = x[k] h[j – k]

= [ 1 6 14 23 34 39 25 13 10 ]

Σ
k



Another Way to Look at Convolution

Think of it this way:

– Flip the function h around zero

– Shift a copy to output position j

– Point-wise multiply for each position k the value of 
the function x and the flipped and shifted copy of h

– Add for all k and write that value at position j

∑ −⋅=∗
k

kjhkxjhjx ][][][][



Why Flip the Impulse Function?
An input at t produces a response at t + τ of h(τ)

Suppose I want to determine the output at t

What effect does the input at t + τ have on t?

h(–τ)



Convolution in Two Dimensions
In one dimension:

In two dimensions:

Or, in discrete form:

ττ)(τ dthxthtx ∫
∞

∞−

−=∗ )()()(

∫ ∫
∞

∞−

∞

∞−

−−=∗ yxyxyx ddyxhIyxhyxI τττ,ττ,τ )()(),(),(

∑∑ −−=∗
k j

kyjxhkjIyxhyxI ],[],[],[],[



Example: Two-Dimensional Convolution

____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____

1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2

1 1 1
* 1 2 1 =

1 1 1



Example: Two-Dimensional Convolution

1 2 4 5 4 2
2 5 9 12 10 4
3 7 13 17 14 6
3 7 13 17 14 6
2 5 9 12 10 4
1 2 4 5 4 2

1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2

1 1 1
* 1 2 1 =

1 1 1



Properties of Convolution
• Commutative: f * g = g * f
• Associative: f * (g * h) = (f * g) * h
• Distributive over addition: f * (g + h) = f * g + f * h

• Derivative:

Convolution has the same mathematical properties as 
multiplication
(This is no coincidence)

( )d f g f g f g
dt

′ ′∗ = ∗ + ∗



Useful Functions
• Square: Πa(t)

• Triangle: Λa(t)

• Gaussian: G(t, s)

• Step: u(t)

• Impulse/Delta: δ (t)

• Comb (Shah Function): combh(t)

Each has their two-dimensional equivalent.



Square

What does f(t) * Πa(t) do to a signal f(t)?
What is Πa(t) * Πa(t)? 

-a a

11    if 
( )

0   otherwisea

t a
t

⎧ ≤⎪Π = ⎨
⎪⎩



Triangle

-a a

1
1     if 

( )
0              otherwise

a

t t aat
⎧ − ≤⎪Λ = ⎨
⎪⎩



Gaussian
Gaussian: maximum value = 1

Normalized Gaussian: area = 1

Convolving a Gaussian with another:

-σ σ

1

-σ σ

1

2
22( , )

t
G t e σσ

−
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2
221( , )
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t
G t e σσ

πσ
−
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Step Function

What is the derivative of a step function?

1

⎩
⎨
⎧ ≥

=
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Impulse/Delta Function
• We’ve seen the delta function before:

• Shifted Delta function: impulse at t = k

• What is a function f(t) convolved with δ (t)?
• What is a function f(t) convolved with δ (t - k)?

0

k0

∫
∞

∞−

=
⎩
⎨
⎧ =∞

= 1)(    and    
otherwise     0

0 if    
)( dtt

t
t δδ

⎩
⎨
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otherwise     0

 if    
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ktδ



Comb (Shah) Function
A set of equally-spaced impulses: also called an impulse 
train

h is the spacing
What is f(t) * combh(t)?

-2h h-h 2h 3h0-3h

∑ −=
k

h hkttcomb )()( δ



Convolution Filtering
• Convolution is useful for modeling the behavior of 

linear, shift-invariant devices
• It is also useful to do ourselves to produce a desired 

effect
• When we do it ourselves, we get to choose the function 

that the input will be convolved with
• This function that is convolved with the input is called 

the convolution kernel



Convolution Filtering: Averaging

Can use a square function (“box filter”) or Gaussian to 
locally average the signal/image
– Square (box) function: uniform averaging
– Gaussian: center-weighted averaging

Both of these blur the signal or image



Convolution Filtering: Unsharp Masking

To sharpen a signal/image, subtract a little bit of the 
blurred input:

I(x, y) + α [I(x, y) – I(x, y) * G(x, y, σ)]

This is called unsharp masking

The larger you make α, the more sharpening you get

More on filters in later sessions!



Text Credits 

The text for this lecture was adapted in part from the following source, in 
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519/index.html
© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon,  97331
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