For students of HI 5323
"Image Processing"

Willy Wriggers, Ph.D.
School of Health Information Sciences
http://biomachina.org/courses/processing/05.html

Interpolation

Forward Mapping

Let $u(x, y)$ and $v(x, y)$ be a mapping from location (x, y) to (u, v) :

$$
B[u(x, y), v(x, y)]=A[x, y]
$$

Forward Mapping: Problems

- Doesn't always map to pixel locations
- Solution: spread out effect of each pixel, e.g. by bilinear interpolation

Forward Mapping: Problems

- May produce holes in the output

Forward Mapping: Problems

- May produce holes in the output
- Solution: sample source image (A) more often
- Still can leave holes

Backward Mapping

Let $x(u, v)$ and $y(u, v)$ be an inverse mapping from location (x, y) to (u, v) :

$$
B[u, v]=A[x(u, v), y(u, v)]
$$

Backward Mapping: Problems

- Doesn't always map from a pixel
- Solution: Interpolate between pixels

Backward Mapping: Problems

- May produce holes in the input
- Solution: reduce input image (by averaging pixels) and sample reduced/averaged image \rightarrow MIP-maps

Interpolation

- "Filling In" between the pixels
- A function of the neighbors or a larger neighborhood
- Methods:
- Nearest neighbor
- Bilinear
- Bicubic or other higher-order

Interpolation: Nearest-Neighbor

- Simplest to implement: the output pixel is assigned the value of the pixel that the point falls within
- Round off x and y values to nearest pixel
- Result is not continuous (blocky)

Interpolation: Linear (1D)

- General idea:
original function values

To calculate the interpolated values

$$
\frac{F-f\left(x_{1}\right)}{\lambda}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{1}
$$

Interpolation: Linear (2D)

- How a 4×4 image would be interpolated to produce an 8×8 image?

Bilinear Interpolation

- Substituting with the values just obtained:

$$
\begin{aligned}
f\left(x^{\prime}, y^{\prime}\right) & =\lambda(\mu f(x+1, y+1)+(1-\mu) f(x+1, y)) \\
& +(1-\lambda)(\mu f(x, y+1)+(1-\mu) f(x, y))
\end{aligned}
$$

- You can do the expansion as an exercise.
- This is the formulation for bilinear interpolation

Bilinear Interpolation

- The output pixel value is a weighted average of pixels in the nearest 2-by-2 neighborhood
- Linearly interpolate in one direction (e.g., vertically)
- Linearly interpolate results in the other direction (horizontally)

General Interpolation

- We wish to interpolate a value $\mathrm{f}\left(\mathrm{x}^{\prime}\right)$ for $x_{1} \leq x^{\prime} \leq x_{2}$ and suppose $x^{\prime}-x_{1}=\lambda$
- We define an interpolation kernel $\mathrm{R}(\mathrm{u})$ and set

$$
f\left(x^{\prime}\right)=R(-\lambda) f\left(x_{1}\right)+R(1-\lambda) f\left(x_{2}\right)
$$

General Interpolation: $0^{\text {th }}$ and $1^{\text {st }}$ orders

- Consider 2 functions $R_{0}(u)$ and $R_{1}(u)$

$R_{0}(u)=\left\{\begin{array}{lr}0 & \text { if } u \leq-0.5 \\ 1 & \text { if }-0.5<u \leq 0.5 \\ 0 & \text { if } u>0.5\end{array} \quad R_{1}(u)= \begin{cases}1+u & \text { if } u \leq 0 \\ 1-u & \text { if } u \geq 0\end{cases}\right.$
Substitute $R_{0}(u)$ for $R(u) ~ \square$ nearest-neighbor interpolation.
Substitute $R_{1}(u)$ for $R(u) ~ l i n e a r$ interpolation.

Interpolation Kernel

1D Interpolation

Zero Order
Nearest Neighbor

1D Interpolation

Zero Order

Nearest Neighbor

1D Interpolation

Zero Order

Nearest Neighbor

1D Interpolation

Zero Order
Nearest Neighbor

1D Interpolation

First Order
Linear Interpolation

1D Interpolation

First Order
Linear Interpolation

1D Interpolation

First Order
Linear Interpolation

1D Interpolation

First Order
Linear Interpolator

1D Interpolation

Second Order
Quadratic Interpolation

1D Interpolation

Second Order
Quadratic Interpolation

1D Interpolation

Second Order
Quadratic Interpolation

1D Interpolation

Second Order

Quadratic Interpolator

1D Interpolation

Third Order
Cubic Interpolation

Remarks About Higher-Order Interpolation

- Higher-degree polynomials:
- e.g., cubic
- Sometimes other interpolating functions
- Requires a larger neighborhood:
- e.g., bicubic requires a 4×4 neighborhood
- More expensive

Another $3^{\text {rd }}$ order (Cubic) Example

$$
R_{3}(u)=\left\{\begin{array}{cc}
1.5|u|^{3}-2.5|u|^{2}+1 & \text { if }|u| \leq 1 \\
-0.5|u|^{3}+2.5|u|^{2}-4|u|+2 & \text { if } 1<|u| \leq 2
\end{array}\right.
$$

Now have 4 support points:

$$
f\left(x^{\prime}\right)=R_{3}(-1-\lambda) f\left(x_{1}\right)+R_{3}(-\lambda) f\left(x_{2}\right)+R_{3}(1-\lambda) f\left(x_{3}\right)+R_{3}(2-\lambda) f\left(x_{4}\right)
$$

2D Interpolation

Kernel Product

2D Interpolation

Kernel Product

2D Interpolation

Kernel Product

x, y separable variables

Bicubic (2D)

- Bicubic interpolation fits a series of cubic polynomials to the brightness values contained in the 4×4 array of pixels surrounding the calculated address.
- Step 1: four cubic polynomials $F(i), i=0,1,2,3$ are fit to the control points along the rows. The fractional part of the calculated pixel's address in the x-direction is used.

Bicubic (2D)

- Step 2: the fractional part of the calculated pixel's address in the y-direction is used to fit another cubic polynomial down the column, based on the interpolated brightness values that lie on the curves $F(i), i=0, \ldots, 3$.

Bicubic (2D)

- Substituting the fractional part of the calculated pixel's address in the x -direction into the resulting cubic polynomial then yields the interpolated pixel's brightness value.

Three Interpolations Comparison

- Trade offs:
- Aliasing versus blurring
- Computation speed

nearest neighbor

bilinear

bicubic

General Interpolation: Summary

- For NN interpolation, the output pixel is assigned the value of the pixel that the point falls within. No other pixels are considered.
- For bilinear interpolation, the output pixel value is a weighted average of pixels in the nearest 2-by-2 neighborhood.
- For bicubic interpolation, the output pixel value is a weighted average of pixels in the nearest 4-by-4 neighborhood.
- Bilinear method takes longer than nearest neighbor interpolation, and the bicubic method takes longer than bilinear.
- The greater the number of pixels considered, the more accurate the computation is, so there is a trade-off between processing time and quality.
- Only trade-off of higher order methods is edge-preservation.
- Sometimes hybrid methods are used.

2D Geometric Operations

2D Geometric Operations: Translation

Shifting left-right and/or up-down:

$$
\begin{aligned}
& x^{\prime}=x+x_{0} \\
& y^{\prime}=y+y_{0}
\end{aligned}
$$

Matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & x_{0} \\
0 & 1 & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+x_{0} \\
y+y_{0} \\
1
\end{array}\right]
$$

Convenient Notation: Homogeneous Coordinates

- Add one dimension, treat transformations as matrix multiplication
- Can be generalized to 3D

2D Geometric Operations: Reflection

Reflection Y

$$
\left[\begin{array}{c}
t_{x}^{\prime} \\
t_{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
t_{x} \\
t_{y} \\
1
\end{array}\right]
$$

Reflection X

$$
\left[\begin{array}{c}
t_{x}^{\prime} \\
t_{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
t_{x} \\
t_{y} \\
1
\end{array}\right]
$$

2D Geometric Operations: Scaling

Enlarging or reducing horizontally and/or vertically:

$$
\begin{aligned}
& x^{\prime}=S_{x} x \\
& y^{\prime}=S_{y} y
\end{aligned}
$$

Matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
S_{x} x \\
S_{y} y \\
1
\end{array}\right]
$$

2D Geometric Operations: Rotation

Result components dependent on both $x \& y$:

$$
\begin{aligned}
& x^{\prime}=\cos (\theta) x-\sin (\theta) y \\
& y^{\prime}=\sin (\theta) x+\cos (\theta) y
\end{aligned}
$$

Matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta) x-\sin (\theta) y \\
\sin (\theta) x+\cos (\theta) y \\
1
\end{array}\right]
$$

Rotation Operation: Problems

- In image space, when rotating a collection of points, what could go wrong?

Rotation Operation: Problems

- Problem1: part of rotated image might fall out of valid image range.
- Problem2: how to obtain the intensity values in the rotated image?

Consider all integer-valued points (x^{\prime}, y^{\prime}) in the dashed rectangle.
A point will be in the image if, when rotated back, it lies within the original image limits.

$$
0 \leq x^{\prime} \cos \theta+y^{\prime} \sin \theta \leq a
$$

$0 \leq-x^{\prime} \sin \theta+y^{\prime} \cos \theta \leq b$

See homework assignment 2!

2D Geometric Operations: Affine Transforms

Linear combinations of x, y, and 1 : encompasses all translation, scaling, \& rotation (also skew and shear):

$$
\begin{aligned}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=d x+e y+f
\end{aligned}
$$

Matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

Affine Transformations (cont.)

- Translations and rotations are rigid body transformations
- General affine transformations also include non-rigid transformations (e.g., skew or shear)
- Affine means that parallel lines transform to parallel lines

Compound Transformations

Example: rotation around the point $\left(x_{0}, y_{0}\right)$

$$
\left[\begin{array}{ccc}
1 & 0 & x_{0} \\
0 & 1 & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x_{0} \\
0 & 1 & -y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Matrix multiplication is associative (but not commutative):

$$
B(A v)=(B A) v=C v
$$

where $C=B A$

- Can compose multiple transformations into a single matrix
- Much faster when applying same transform to many pixels

Compound Transformations

Example:

Inverting Matrix Transformations

If

$$
v^{\prime}=M v
$$

then

$$
v=M^{-1} v^{\prime}
$$

Thus, to invert the transformation, invert the matrix
Useful for computing the backward mapping given the forward transform

For more info see e.g.
http://home.earthlink.net/~jimlux/radio/math/matinv.htm

Morphing: Deformations in 2D and 3D

Morphing: Deformations in 2D and 3D

- Parametric Deformations
- Cross-Dissolve
- Mesh Warping
- Control Points

Parametric Deformations

Parametric Deformations - Taper

$$
\begin{array}{cc}
x^{\prime}=x \\
y^{\prime}=f(x) & {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & f(x)
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& P^{\prime}=M(P) \cdot P
\end{array}
$$

b) tapered object

Parametric Deformations - Taper

Parametric Deformations - Twist

$$
\begin{aligned}
& x^{\prime}=s(z) \cdot x \\
& y^{\prime}=s(z) \cdot y \\
& z^{\prime}=z
\end{aligned}
$$

$$
\text { Where } \mathrm{s}(\mathrm{z})=\frac{(\max z-\mathrm{z})}{(\max z-\min z)}
$$

Parametric Deformations - Twist

Parametric Deformations - Bend

$y_{0}-c e n t e r ~ o f ~ b e n d ~$
$1 / k-r a d i u s ~ o f ~ b e n d ~$
$y_{\text {mim }} y_{\text {max }}$ - hend region

$$
y=\begin{array}{cc}
y_{\text {min }} & y \leq y_{\text {win }} \\
y & y_{\text {min }}<y<y_{\text {max }} \\
y_{\text {mux }} & y \geq y_{\text {mux }}
\end{array}
$$

$$
\begin{gathered}
\theta=k \cdot\left(y-y_{0}\right) \\
C_{\theta}=\cos \theta \\
s_{\theta}=\sin \theta
\end{gathered}
$$

$$
x^{\prime} \equiv x
$$

$$
y^{\prime}=\left(\begin{array}{l}
-S_{0} \cdot z-\frac{1}{k}+y_{0} \\
-\left(S_{0} \cdot\left(z-\frac{1}{k}\right)\right)+y_{0}+C_{0} \cdot\left(y-y_{v i n}\right) \\
\left(-\left(S_{0} \cdot\left(z-\frac{1}{k}\right)\right)+y_{0}+C_{0} \cdot\left(y-y_{\max }\right)\right.
\end{array}\right.
$$

$$
y_{\text {mix }} \leq y \leq y_{\operatorname{six} x}
$$

$$
y<y_{\mathrm{vin}}
$$

$$
y>y_{\max }
$$

$$
z^{\prime}=\left(\begin{array}{l}
-C_{\theta} \cdot z-\frac{1}{k}+\frac{1}{k} \\
-\left(C_{\theta} \cdot\left(z-\frac{1}{k}\right)\right)+\frac{1}{k}+S_{0} \cdot\left(y-y_{\text {nula }}\right) \\
\left(-\left(C_{\theta} \cdot\left(z-\frac{1}{k}\right)\right)+\frac{1}{k}+S_{\theta} \cdot\left(y-y_{s u \Delta x}\right)\right.
\end{array}\right.
$$

$$
\begin{gathered}
y_{\text {min }} \leq y \leq y_{\text {max }} \\
y<y_{\text {min }} \\
y>y_{\text {mas }}
\end{gathered}
$$

Parametric Deformations - Bend

Parametric Deformations - Compound

© Rick Parent, www.cse.ohio-state.edu/~parent/classes/682/Lectures/L06_Deformations

Image Blending

Image Blending

- Goal is smooth transformation between image of one object and another
- The idea is to get a sequence of intermediate images which when put together with the original images would represent the change from one image to the other
- Realized by
- Image warping
- Color blending
- Image blending has been widely used in creating movies, music videos and television commercials
- Terminator 2

Cross-Dissolve (Cross-Fading)

- Simplest approach is cross-dissolve:
- linear interpolation to fade from one image (or volume) to another
- No geometrical alignment between images (or volumes)
- Pixel-by-pixel (or voxel by voxel) interpolation
- No smooth transitions, intermediate states not realistic

Problems

- Problem with cross-dissolve is that if features don't line up exactly, we get a double image
- Can try shifting/scaling/etc. one entire image to get better alignment, but this doesn't always fix problem
- Can handle more situations by applying different warps to different pieces of image
- Manually chosen
- Takes care of feature correspondences

Image \mathbf{I}_{S} with mesh \quad Image \mathbf{I}_{T}, mesh \mathbf{M}_{T} \mathbf{M}_{S} defining pieces

Mesh Warping

Mesh Warping Application

Images I_{S} \& meshes Ms

from G. Wolberg, CGI ‘96

Mesh Warping

Mesh Warping

Mesh Warping

- Source and target images are meshed
- The meshes for both images are interpolated
- The intermediate images are cross-dissolved
- Here, we look at 2D example

Mesh Warping Algorithm

- Algorithm
for each frame f do
- interpolate mesh M , between M_{s} and M_{t}
- warp Image I_{s} to I_{1}, using meshes M_{s} and M
- warp Image I_{t} to I_{2}, using meshes M_{t} and M
- interpolate image I_{1} and I_{2}
end
$-I_{s}$: source image, $I_{t}:$ target image
- source image has mesh M_{s}, target image has mesh M_{t}

Mesh Deformation

Mesh Deformation

Mesh Deformation

Mesh Deformation

For each vertex identify cell, fractional u,v coordinate in unit cell

Mesh Deformation

Mesh Deformation

Mesh Deformation

Free-Form Deformations

FFD - Register Point in Cell

FFD - Register Point in Cell

FFD - Create Control Grid

(not necessarily orthogonal)

FFD - Move and Reposition

Move control grid points

Usually tri-cubic interpolation is used with FFDs

Originally, Bezier interpolation was used.
B-spline and Catmull-Romm interpolation have also been used (as well as tri-linear interpolation)

FFD Example

Step1

It is originally a cylinder.
Red boundary is FFD block embedded with that cylinder.

Move control points of each end, and you can see cylinder inside also changes.

FFD Example

step3

Move inner control points downwards.
step4

Finally, get a shaded version of banana!

BSplines (Cubic) Interpolation

Original Lena

BSplines (Cubic) Interpolation

Deformed with BSpline Transform

Deformable Registration Framework

Deformable Registration

Deformed with BSpline Transform

Deformable Registration

Registered with BSpline Transform

Deformable Registration

Original Lena

Deformable Registration

Difference Before Registration

Difference After Registration

Control Point Warping

Control Point Warping

Instead of a warping mesh, use arbitrary correspondence points:
Tip of one person's nose to the tip of another, eyes to eyes, etc.

Interpolate between correspondence points to determine how points move
Apply standard warping (forward or backward):
In-between image is a weighted average of the source and destination corresponding pixels
Here we look at 3D example...

Finding Control Points in 3D Structures

Actin filament: Reconstruction from EM data at $20 \AA$ resolution

rmsd: $1.1 \AA$

Control Point Displacements

Have 2 conformations, both source and target characterized by control points

RNA Polymerase, Wriggers, Structure, 2004, Vol. 12, pp. 1-2.

Piecewise-Linear Inter- / Extrapolation

For each probe position find 4 closest control points.
Ansatz: $\quad F_{x}(x, y, z)=a x+b y+c z+d$

$$
\begin{aligned}
& F_{x}\left(\mathbf{w}_{1}\right)=f_{1, x}, \\
& F_{x}\left(\mathbf{w}_{2}\right)=f_{2, x}, \\
& F_{x}\left(\mathbf{w}_{3}\right)=f_{3, x}, \\
& F_{x}\left(\mathbf{w}_{4}\right)=f_{4, x} \quad\left(\text { similar for } F_{y}, F_{z}\right) .
\end{aligned}
$$

Cramer's rule:
$a=\frac{\left|\begin{array}{llll}f_{1, x} & w_{1, y} & w_{1, z} & 1 \\ f_{2, x} & w_{2, y} & w_{2, z} & 1 \\ f_{3, x} & w_{3, y} & w_{3, z} & 1 \\ f_{4, x} & w_{4, y} & w_{4, z} & 1\end{array}\right|}{D}, b=\frac{\left|\begin{array}{llll}w_{1, x} & f_{1, y} & w_{1, z} & 1 \\ w_{2, x} & f_{2, y} & w_{2, z} & 1 \\ w_{3, x} & f_{3, y} & w_{3, z} & 1 \\ w_{4, x} & f_{4, y} & w_{4, z} & 1\end{array}\right|}{D}, \cdots, \quad D=\left|\begin{array}{llll}w_{1, x} & w_{1, y} & w_{1, z} & 1 \\ w_{2, x} & w_{2, y} & w_{2, z} & 1 \\ w_{3, x} & w_{3, y} & w_{3, z} & 1 \\ w_{4, x} & w_{4, y} & w_{4, z} & 1\end{array}\right|$
See e.g. http://mathworld.wolfram.com/CramersRule.html

Non-Linear Kernel Interpolation

Consider all k control points and interpolation kernel function $U(r)$.
Ansatz:

$$
\begin{aligned}
& F_{x}(x, y, z)=a_{1}+a_{x} x+a_{y} y+a_{z} z+\sum_{k=1}^{k} b_{i} \cdot U\left(\left|\mathbf{w}_{i}-(x, y, z)\right|\right) \\
& F_{x}\left(\mathbf{w}_{i}\right)=f_{i, x}, \forall i \quad\left(\text { similar for } F_{y}, F_{z}\right) .
\end{aligned}
$$

Solve :

$$
\begin{aligned}
& \mathrm{L}^{-1}\left(f_{1, x}, \cdots, f_{k, x}, 0,0,0,0\right)=\left(b_{1}, \cdots, b_{k}, a_{1}, a_{x}, a_{y}, a_{z}\right)^{\mathrm{T}}, \\
& \text { where } \quad \mathbf{L}=\left(\begin{array}{c|c}
\mathbf{P} & \mathbf{Q} \\
\hline \mathbf{Q}^{\mathrm{T}} & \mathbf{0}
\end{array}\right), \quad \mathbf{Q}=\left(\begin{array}{cccc}
1 & w_{1, x} & w_{1, y} & w_{1, z} \\
\cdots & \cdots & \cdots & \cdots \\
1 & w_{k, x} & w_{k, y} & w_{k, z}
\end{array}\right), k \times 4, \\
& \mathbf{P}=\left(\begin{array}{cccc}
0 & U\left(w_{12}\right) & \cdots & U\left(w_{1 k}\right) \\
U\left(w_{21}\right) & 0 & \cdots & U\left(w_{2 k}\right) \\
\cdots & \cdots & \cdots & \cdots \\
U\left(w_{k 1}\right) & U\left(w_{k 2}\right) & \cdots & 0
\end{array}\right), k \times k .
\end{aligned}
$$

Bookstein "Thin-Plate" Splines

- kernel function $U(r)$ is principal solution of biharmonic equation that arises in elasticity theory of thin plates:

$$
\Delta^{2} U(r)=\nabla^{4} U(r)=\delta(r)
$$

- variational principle: $U(r)$ minimizes the bending energy (not shown).
-1D: $U(r)=\left|r^{3}\right|$ (cubic spline)
-2D: $U(r)=r^{2} \log r^{2}$
-3D: $U(r)=|r|$

RNAP Example: Source Structure

Piecewise-Linear Inter- / Extrapolation

Thin-Plate Splines, 3D $|\mathrm{r}|$ Kernel

Control: Molecular Dynamics

Resources

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapter 8 John C. Russ, The Image Processing Handbook, Chapter 3

Online Graphics Animations: http://nis-lab.is.s.u-tokyo.ac.jp/~nis/animation.html

