
Introduction to C++ Part II

For students of HI 5323
“Image Processing”

Willy Wriggers, Ph.D.
School of Health Information Sciences

http://biomachina.org/courses/processing/03.html

T H E U N I V E R S I T Y of T E X A S

H E A L T H S C I E N C E C E N T E R A T H O U S T O N

S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S

Review of Last Session
by Example

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

Comments

Written between /* and */ or following a //.

Improve program readability and do not cause the
computer to perform any action.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

preprocessor directive

Message to the C++ preprocessor.

Lines beginning with # are preprocessor directives.

#include <iostream> tells the preprocessor to
include the contents of the file <iostream>, which
includes input/output operations (such as printing to
the screen).

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

C++ programs contain one or more functions, one of
which must be main

Parenthesis are used to indicate a function

int means that main "returns" an integer value.
More in Chapter 3.

A left brace { begins the body of every
function and a right brace } ends it.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

Prints the string of characters contained between the
quotation marks.

The entire line, including std::cout, the <<
operator, the string "Welcome to C++!\n" and
the semicolon (;), is called a statement.

All statements must end with a semicolon.
© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

return is a way to exit a function
from a function.

return 0, in this case, means that
the program terminated normally.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

Welcome to C++!

1 // Fig. 1.4: fig01_04.cpp

2 // Printing a line with multiple statements

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome ";

8 std::cout << "to C++!\n";

9

10 return 0; // indicate that program ended successfully

11 }

Unless new line '\n' is specified, the text continues
on the same line.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.5: fig01_05.cpp

2 // Printing multiple lines with a single statement

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome\nto\n\nC++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome
to

C++!

Multiple lines can be printed with one
statement.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program

3 #include <iostream>

4

5 int main()

6 {

7 int integer1, integer2, sum; // declaration

8

9 std::cout << "Enter first integer\n"; // prompt

10 std::cin >> integer1; // read an integer

11 std::cout << "Enter second integer\n"; // prompt

12 std::cin >> integer2; // read an integer

13 sum = integer1 + integer2; // assignment of sum

14 std::cout << "Sum is " << sum << std::endl; // print sum

15

16 return 0; // indicate that program ended successfully

17 }

Enter first integer
45
Enter second integer
72
Sum is 117

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program

3 #include <iostream>

4

5 int main()

6 {

7 int integer1, integer2, sum; // declaration

8

9 std::cout << "Enter first integer\n"; // prompt

10 std::cin >> integer1; // read an integer

11 std::cout << "Enter second integer\n"; // prompt

12 std::cin >> integer2; // read an integer

13 sum = integer1 + integer2; // assignment of sum

14 std::cout << "Sum is " << sum << std::endl; // print sum

15

16 return 0; // indicate that program ended successfully

17 }

Enter first integer
45
Enter second integer
72
Sum is 117

Notice how std::cin is used to get user
input.

Variables can be output using std::cout << variableName.

std::endl flushes the buffer and
prints a newline.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.14: fig01_14.cpp
2 // Using if statements, relational
3 // operators, and equality operators
4 #include <iostream>
5
6 using std::cout; // program uses cout
7 using std::cin; // program uses cin
8 using std::endl; // program uses endl
9
10 int main()
11 {
12 int num1, num2;
13
14 cout << "Enter two integers, and I will tell you\n"
15 << "the relationships they satisfy: ";
16 cin >> num1 >> num2; // read two integers
17
18 if (num1 == num2)
19 cout << num1 << " is equal to " << num2 << endl;
20
21 if (num1 != num2)
22 cout << num1 << " is not equal to " << num2 << endl;
23
24 if (num1 < num2)
25 cout << num1 << " is less than " << num2 << endl;
26
27 if (num1 > num2)
28 cout << num1 << " is greater than " << num2 << endl;
29
30 if (num1 <= num2)
31 cout << num1 << " is less than or equal to "
32 << num2 << endl;
33

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.14: fig01_14.cpp
2 // Using if statements, relational
3 // operators, and equality operators
4 #include <iostream>
5
6 using std::cout; // program uses cout
7 using std::cin; // program uses cin
8 using std::endl; // program uses endl
9
10 int main()
11 {
12 int num1, num2;
13
14 cout << "Enter two integers, and I will tell you\n"
15 << "the relationships they satisfy: ";
16 cin >> num1 >> num2; // read two integers
17
18 if (num1 == num2)
19 cout << num1 << " is equal to " << num2 << endl;
20
21 if (num1 != num2)
22 cout << num1 << " is not equal to " << num2 << endl;
23
24 if (num1 < num2)
25 cout << num1 << " is less than " << num2 << endl;
26
27 if (num1 > num2)
28 cout << num1 << " is greater than " << num2 << endl;
29
30 if (num1 <= num2)
31 cout << num1 << " is less than or equal to "
32 << num2 << endl;
33

The if statements test the truth
of the condition. If it is true,
body of if statement is
executed. If not, body is
skipped.

To include multiple statements
in a body, delineate them with
braces {}.

Notice the using statements.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

1 // Fig. 1.14: fig01_14.cpp
2 // Using if statements, relational
3 // operators, and equality operators
4 #include <iostream>
5
6 using std::cout; // program uses cout
7 using std::cin; // program uses cin
8 using std::endl; // program uses endl
9
10 int main()
11 {
12 int num1, num2;
13
14 cout << "Enter two integers, and I will tell you\n"
15 << "the relationships they satisfy: ";
16 cin >> num1 >> num2; // read two integers
17
18 if (num1 == num2)
19 cout << num1 << " is equal to " << num2 << endl;
20
21 if (num1 != num2)
22 cout << num1 << " is not equal to " << num2 << endl;
23
24 if (num1 < num2)
25 cout << num1 << " is less than " << num2 << endl;
26
27 if (num1 > num2)
28 cout << num1 << " is greater than " << num2 << endl;
29
30 if (num1 <= num2)
31 cout << num1 << " is less than or equal to "
32 << num2 << endl;
33

Enter two integers, and I will tell you

the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

34 if (num1 >= num2)

35 cout << num1 << " is greater than or equal to "

36 << num2 << endl;

37

38 return 0; // indicate that program ended successfully

39 }

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

Functions and Memory Concepts

• Variables
– Correspond to locations in the computer's memory
– Every variable has a name, a type, a size and a value
– Whenever a new value is placed into a variable, it

replaces the previous value - it is destroyed
– Reading variables from memory does not change them

• A visual representation:

integer1 45

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

Memory Concepts

Pointer

– A pointer is a value that denotes an object
location in memory. A pointer variable is a
variable that holds pointer values. The type
associated with a pointer variable or value
constrains the kind of object or variable at the
designated location.

• A reference is an alternative name for an object. The notation
&x means reference to x. A reference must be initialized.

void f()
{
int i = 1;
int& r = i; // r and i refer to same int
int x = r; // x = 1
r = 2; // i = 2

}

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Reference

Examples
int x, y;
int *p = &x; // p holds the location of an integer variable.
int &q = y; // q holds a reference of an integer variable.

// q and y are now names of the same variable!

int *f() { return &x; } // result value points to x.

int &g(){ return x; } // result value can substitute for a reference to x.

void swap(int *a, int *b){ int t = *a; *a = *b; *b = t; } //call: swap(&x, &y);

void swap(int &a, int &b){ int t = a; a = b; b = t; } //call: swap(x, y);

Color: meaning of * and & symbols depend on the context:
– In a declaration, int *x means x is a pointer to a variable of type int
– In a statement, *x means the actual variable pointed to by pointer x
– In a declaration, int &x means x holds the name of a variable of type int
– In a statement, &x means the location of variable x

Examples

Color: meaning of * and & symbols depend on the context:
– In a declaration, int *x means x is a pointer to a variable of type int
– In a statement, *x means the actual variable pointed to by pointer x
– In a statement, &x means the location of variable x

x&x

*xx

VariableLocation

Examples

Color: meaning of * and & symbols depend on the context:
– In a declaration, int *x means x is a pointer to a variable of type int
– In a statement, *x means the actual variable pointed to by pointer x
– In a statement, &x means the location of variable x

x&x

*xx

VariableLocation intuitive (C-style): * and & change
between location and variable:
•(int *)x: x has “pointer to int” type
•int (*x): *x has int type, is actual variable
•& is antidote to * in statements

Examples

Color: meaning of * and & symbols depend on the context:
– In a declaration, int *x means x is a pointer to a variable of type int
– In a statement, *x means the actual variable pointed to by pointer x
– In a statement, &x means the location of variable x

x&x

*xx

VariableLocation intuitive (C-style): * and & change
between location and variable:
•(int *)x: x has “pointer to int” type
•int (*x): *x has int type, is actual variable
•& is antidote to * in statements

careful, there is no “location-variable type change” when used this way

– In a C++ declaration, int &x means x holds the name of a variable of type int

void foo(int x); // pass by value

void foo(int* x); // pass using pointer

void foo(int &x); // pass by reference (new)

Argument Passing

void f(int val, int &ref)
{
val++;
ref++;

}

• When f() is called, val++ increments a local copy of the 1st

argument, whereas ref++ increments the 2nd argument.

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Argument Passing

void g()
{
int i = 1;
int j = 1;
f(i, j); // increments j but not i

}

• The 1st argument, i, is passed by value, the 2nd argument, j,
is passed by reference.

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Argument Passing

• It can be more efficient to pass a large object by reference
than to pass it by value.

• Declaring an argument const does not enable the called
function to change the object value.

void f(const Large& arg)
{
// the value of arg cannot be changed

}

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Argument Passing

• A direction for the preprocessor to substitute code

C macro:

#define max(a,b) (((a) > (b) ? (a) :
(b))

C++ inline function:

inline int max(int a, int b) {return
a>b ? a : b ;}

Inline Functions

Inline Functions

• Problems with macros in C
– Can be a source of problems
– Has no class scope !!

• C++ solves the problem with inline functions
– Under the control of the compiler
– Expanded in-place

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

void foo()
{

int *p = new int;

delete p;
}

void foo()
{

int *p = new int[23];

delete [] p;
}

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

new and delete operators
Memory Management in C++

• Do not mix array and non-array allocations.

void foo()

{

int* p = new int[100];

delete p; // disaster!

}

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Memory Management in C++

• Do not mix C-style memory management with C++ memory
managment.

void foo()
{

int* p = new int;

free(p); // disaster!
}

• Do not use malloc and free.

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Memory Management in C++

• Using the same name for operations on different types is
called overloading.

int max(int, int);
double max(double, double);
long max(long, long);

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Overloaded Function Names

• Finding the right version to call from a set of overloaded
functions is done by looking for a best match between
the type of the argument expression and the parameters
of the functions:

1. Exact match
2. Match using promotions: bool, char, short to int; float to double.
3. Match using standard conversions:

int to double, double to int

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Overloaded Function Names

void print(char);
void print(int);

void h(char c, int i, short s, double d)
{

print(c); // exact match: invoke print(char)
print(i); // exact match: invoke print(int)
print(s); // promotion: invoke print(int)
print(d); // conversion: double to int

}

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Example

Overloaded Operators

• enable conventional notations

Inline bool operator==(Date a,Date b) //equality

{ return a.day()==b.day() &&
a.month()==b.month() && a.year()==b.year();

}

bool operator!=(Date,Date); //inequality;

bool operator<(Date,Date); //less than

bool operator>(Date,Date); //greater than

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

• Often a function needs more arguments than necessary
to handle simple cases.

• Default values may be provided for trailing arguments
only:

void foo (int a, int b = 0)
int a, b;
foo (a, b);
foo (a); // called foo function with

// arguments (a, 0)

Default Arguments

Classes

Classes and Data Abstraction

• C style structure
struct point {

int x;
int y;

};

struct point {
unsigned int r;
unsigned int theta;

};

• C++ class
class point {
public:

point (void);
~point (void);
int getX (void) const;
int getY (void) const;
unsigned int getR (void) const;
unsigned int getTheta (void) const;

private:
int x_;
int y_;

};
A class definition is in a header file: .h file
A class implementation is in a .cc, .cpp, .cxx file

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

• Encapsulation of a set of data types and
their operations: the class construct.

• Data hiding.
• Data type hierarchy & code reuse via

inheritance: deriving a new class from an
existing one.

• Design is crucial!

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Object-Oriented Programming

• A class is a user-defined type, which allows
encapsulation.

• The construct
class X { ... };
is a class definition.

• Contains data and function members.
• Access control mechanisms (private vs. public

– see below).

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Classes

class Point {
private:

int x, y, visible; // private part
// can be used only by member functions

public: // public part, interface
void setpoint(int xx, int yy) { x=xx; y=yy; visible = 1; }
int getx() { return x; }
int gety() { return y; }
void draw() {

gotoxy(x,y);
putchar('*');
visible = 1;

}
void hide() {

gotoxy(x,y);
putchar(' ');
visible = 0;

}
// member functions defined within the class definition,

}; // rather than simply declared there are inline.

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Example

Point p1, p2;
p1.setpoint(10,20);
p1.draw();
p2.setpoint(15,15);
p2.draw();
p1.hide();

Example

• A member function declaration specifies:

1. The function can access the private part of the class
declaration.

2. The function is in the scope of the class.
3. The function must be invoked on an object.

• In a member function, member names can be
used without explicit reference to an object.

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Member Functions

class Array {
private:

int *parray;
int size;

public:
void init();
int get(int indx);
void print();
void set(int indx, int value);

};
// :: is the scope resolution operator
void Array::init(){ parray = 0; size = 0; }
int Array::get(int i) { return parray[i]; }
void Array::print()
{

for (int i = 0; i < size; i++)
cout << endl << “array[“ << i << “]=“ <<
parray[i];

}

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Example

void Array::set(int indx, int value)
{

if (indx > size) {
int *p = new int[indx+1];
for (int i = 0; i < size; i++)

p[i] = parray[i];
delete [] parray;
size = indx;
parray = p;

}
parray[indx] = value;

}

Array a1;
a1.init();
a1.set(3,50);
a1.set(1,100);
a1.set(2,70);
a1.print();

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Example

• Using functions such as init() to initialize
class objects is error prone and
complicates the code.

• Constructors are member functions with
the explicit purpose of constructing values
of a given type, recognized by having the
same name as the class itself.

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Constructors

• A constructor initializes an object, creating the
environment in which the member functions
operate. This may involve acquiring a resource
such as a file, lock, and usually memory, that
must be released after use.

• Destructor is a function that is guaranteed to be
invoked when an object is destroyed, cleans up
and releases resources.

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Destructors

class Array {
Array(); // default constructor
Array(int); // constructor
~Array(); // destructor

};

Array::Array() {
parray = 0;
size = 0;

}
Array::Array(int len) {

parray = new int[len];
size = len;

}
Array::~Array() {

delete [] parray;
}

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Constructors & Destructors

• If x is an object of class X, “X y=x;” (or, equivalently “X y(x);”)
by default means member-wise copy of x into y. This can cause
undesired effects when used on objects of a class with pointer
members.

• The programmer can define a suitable meaning for copy operations
by a copy constructor (and similarly for the assignment operator).

Table::Table(const Table& t) {
p = new Name[size = t.size];
for (int i = 0; i < size; i++) p[i] = t.p[i];

}
String::String(const String &s) {

str = new char[s.length()+1];
strcpy(str, s);

}

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Copy Constructor

• This points to the object for which a member function is
invoked.

• Used to return the object or to manipulate a self-referential
data structure.

Date& Date::set_date(int dd, int mm, int yy)
{

d = dd;
m = mm;
y = yy;
return *this; // enables cascading

}

d.set_date(20, 1, 2000).print();

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Self-Reference

• A friend function declaration specifies: the function can
access the private part of the class declaration.

• Useful for object output (see below).

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Friends

class Matrix;
class Vector {

int v[4];
public:

Vector(){ v[0] = v[1] = v[2] = v[3] = 0; }
int& elem(int i) { return v[i]; }
friend Vector multiply(const Matrix &, const Vector &);

};
class Matrix {

Vector v[4];
public:

int& elem(int i, int j) { return v[i].elem(j); }
friend Vector multiply(const Matrix &, const Vector &);

};
// multiply can be a friend of both Matrix and Vector
Vector multiply(const Matrix & m, const Vector & v) {

Vector r;
for (int i = 0; i < 4; i++)

for(int j = 0; j < 4; j++)
r.v[i] += m.v[i].v[j] * v.v[j];

return r;
};

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Example

employee:
name
age
…

name
age
…

group
level

manager:

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Derived Classes: Inheritance

// a manager is an employee
// derived
class manager : public employee {

employee* group; // people managed
short level;

}; employee

manager

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Derived Classes

•Now we can put managers onto a list of employees without writing
special code for managers.

• A member of a class can be private, protected, or
public.

1. If it’s private, its name can be used only by member
functions and friends of the class in which it is declared.

2. If it’s protected, its name can be used only by member
functions and friends of the class in which its declared
and by member function and friends of classes derived
from this class.

3. If it’s public, its name can be used by any function.

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Access Control

class Base1 {
private:

int i;
protected:

int j;
public:

int k;
};

main () {
Base1 b;
int x;
x = b.i; // error
x = b.j; // error
x = b.k; // ok

}

© 2005 Roded Sharan, www.cs.tau.ac.il/~roded/courses/soft1-b05/cpp.ppt

Access Control

Access Control

private:

protected:

public:

general users

derived class’ member functions and friends

own member functions and friends

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Class Hierarchies
• A derived class can itself be a base class.
• A class may be derived from any number of base class.
 -> multiple inheritance

class Employee { /* ... */ };
class Manager : public Employee { /* ... */ };
class Director : public Manager { /* ... */ };

class Temporary { /* ... */ };
class Secretary : public Employee { /* ... */ };

class Tsec : public Temporary, public Employee { /* ... */ };
class Consultant

: public Temporary, public Manager { /* ... */ };

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Class Hierarchies

Temporary Employee

Secretary Manager

Director

Tsec

Consultant

Class Hierarchy

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Virtual Functions
• Virtual function allows the programmer to declare

functions in base class that can be redefined in each
derived class
Class Employee {

string first_name, family_name;
public :

Employee(const string& name, int dept);
virtual void print() const;
// . . .

};
void Employee::print() const
{

cout << family_name<<‘\n’;
// . . .

}

The key word virtual indicates that print()
can act as interface to the print() defined

in this class and the print() defined in
classes derived from it

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Virtual Functions

struct Manager : public Employee {
set <Employee*> group;
short level;
// …

public :
Manager(const string& name, int dept, int lvl);
void print() const;

};

void Manager::print() const
{

Employee::print();
cout << “\tlevel” << level << ‘\n’;
// . . .

}

Derived class

A function from a derived class
with the same name and the
same set of argument types
as a virtual function in base class
said to override the base class
version of the virtual function

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Abstract Classes

• A class with one or more pure virtual
function is an abstract class.
– No objects of the abstract class can be created
– An abstract class can be used only as a base

class of some other class
• An abstract class mechanism supports a

general concept that links related objects.

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Abstract Classes
class Shape { // abstract class
public:

virtual void rotate(int) = 0; // pure virtual functions
virtual void draw() = 0; // pure virtual functions
virtual is_losed() = 0; // pure virtual functions
// ...

};

Shape s; // error : variable of abstract class Shape

class Circle : public Shape {
public:

void rotate(int) { } // override Shape::rotate
void draw(); // override Shape::draw
bool is_closed() { return true; } // override Shape::is_closed
Circle(Point p, int r);

};

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Exceptions

• Exceptions are special classes used for
error handling at runtime.

• Handle errors at appropriate level
– Exception propagates up call stack until

“caught”.
• Convey useful information to handler

– Error class
– Error details

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Defining Exceptions
• Just another class…

class base_error
{
public:
const char * s;
error (const char * _s = 0);
virtual const char * what () { return s; }

};

class range_error : public base_error
{
public:
const double x;
range_error (double _x) : x(_x) {}
const char * what () { … // construct and return message }

};

class system_error : public base_error
{
public:
const int errno;
system_error (int _errno, const char * s = 0) : errno(_errno) {}
const char * what () { … // return system error message }

};
}

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Throwing Exceptions

• Raise an exception by using the keyword “throw”

double average_grades (istream & in)
{

double x;
double S = 0;
int n = 0;

while (in >> x)
{

if (x < 0 || x > 100)
throw range_error (x);

S += x;
n++;

}

if (n == 0) throw base_error (“empty input file”);

return S / n;
}

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Catching Exceptions
• Catch an exception via a “try..catch” block

int main (int, char *[])
{

using namespace std;

try
{

cout << “average: “ << average_grades(cin) << endl;
}

catch (range_error & e)
{

cerr << “encountered a peculiar grade: ” << e.x << endl;
exit (1);

}

catch (error & e)
{

cerr << “unable to calculate averages: “ << e.what() << endl;
exit (2);

}

return 0;
}

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Static (Global) Class Members

static [const | volatile] type data_member;

– Shared by all class instances
– One instance allocated in static data area and initialized at load time, or prior

to execution of main().
– MUST NOT be initialized by a constructor or modified by a destructor;

these methods manipulate non-static data members.
– MUST be initialized ONE TIME in (.cpp)(class implementation) file as

follows

[const | volatile] type class_name ::data_member = initialization_expression;

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Static Methods

static type method(…);

– Allow access to static data members!
– Do not have a this pointer; cannot access non-static data members!
– Called by the statement:

classname :: method(...);

– Can be called via class instances like other methods.
– Can be public, protected, or private.
– Can be in-line.
– Cannot be const or volatile.

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Standard Library & Namespaces

Standard Library

• Containers
• Iterators
• Algorithms
• Diagnostics
• Strings
• I/O
• Localization
• Language support
• Numerics / Math

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Hello, World!

• The line #include<iostream>instructs the compiler to
include the declarations of the standard stream I/O
facilities as found in iostream

The standard library
is defined in a

namespace called std

#include <iostream>
int main()
{
std::cout << “Hello, world!\n”;
}

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Namespaces
• Explicitly partition globally-scoped type definitions and

variable names into logical segments
• avoid name conflicts among multiple libraries, files, etc

namespace my
{
const double version = 1.1;
class string {…};
class vector {…};

}

namespace your
{
const int version = 3;
class string {…};
class vector {…};

}

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Using Namespaces

• Import namespace into scope
using namespace my;

string s; // implicitly use my::string

• Import individual symbols into scope
use my::string;

use your::vector;

string s; // my::string

vector v; // your::vector

• Explicitly qualify symbols

my::string s;

your::vector v;

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

• Every standard library is provided through some standard
header
– #include<string>
– #include<list>

• To use them, the std:: prefix can be used
– std::string s = “Four legs Good; two legs Baaad!”;
– std::list<std::string> slogans;

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

The Standard Library Namespace

C++ IO: Input

• C++ input based on istream class
– istream offers basic input functionalities
– ifstream (used for file input)
– istringstream (input from text not stored in

files)
• cin is an object/instance of istream class

(already defined when including <iostream>

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

C++ IO: Output

• C++ output based on ostream class
– ostream offers basic output functionalities
– ofstream (used for file output)
– ostringstream (output to memory)

• cout is an object/instance of ostream class
(already defined when including <iostream>

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

C++ Streams

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

#include <iostream>
#include <fstream>
using namespace std;
const int cutoff = 6000;
const float rate1 = 0.3;
const float rate2 = 0.6;
int main() {

// file object declarations
ifstream fin; // ifstream is a subclass of fstream for input streams
fin.open("income.dat“, ios::in); // external file name specified in open method
ofstream fout; // ofstream is a subclass of fstream for output streams
fout.open("tax.out“: ios::out);
int income; float tax; // declarations are compiled and have their effect as encountered
while (fin >> income){ // equates to "true" until EOF is encountered (fin != 0)

if(income < ::cutoff) // ::cutoff refers to the global name “cutoff”
tax = ::rate1*income; // implicit type conversion between int and float

else
tax = ::rate2*income;

fout << "Income = " << income << " Drachma \n"
<< " Tax: " << (int) tax*100.0 << " Lepta" << endl;

}//while
fin.close(); // close file objects
fout.close();
return 0;

}

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

File IO

#include <fstream>
#include <string>
using namespace std;
int main() {

// file object declarations
double rate1 = 0.23, rate2 = 0.37, cutoff = 50000.00;
string fin_name, fout_name;
cout << “Enter name of input file: “; cin >> fin_name; cout << endl;
cout << “Enter name of output file: “; cin >> fout_name; cout << endl;
ifstream fin;
fin.open(fin_name.c_str()); // convert from string to char [] (C style)
ofstream fout;
fout.open(fout_name.c_str());
int income; float tax;
while (fin >> income){

if(income < cutoff)
tax = rate1*income;

else
tax = rate2*income;

fout << "Income = " << income << " Drachma \n"
<< " Tax: " << (int) tax*100.0 << " Lepta" << endl;

}//while
fin.close(); // close file objects
fout.close();
return 0;

}

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

File IO

Strings
• The standard library string type provides a variety of useful string

operations
 string s1 = “Hello”;
 string s2 = “world”;
 void m1()
 {
 string s3 = s1 + “ , ” + s2 + “!\n”;
 s3 += ‘\n’;
 cout << s3;
 }

 string name = “Niels Stroustrup”;
 void m3()
 {
 string s = name.substr(6, 10); // s = “Stroustrup”
 name.replace(0, 5, “Nicholas”); // name becomes “Nicholas Stroustrup”
 }

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

C++ Class string
• String variables and objects can be assigned and concatenated.

string r, s, t;
r = “Hello World”;
s = r; cout << s << endl; // prints “Hello World” to the screen
cin >> t; //reads a string into variable, t
r += t; //appends t on the right end of r
r += “What is this World coming to?”; //appends C-string to right
end of r
r += ‘#’; //appends a character to right end of r

• Methods to use with string objects
– size() yields the length of the string (string::size_type)
– Length() yields the length of the string (string::size_type)
– c_str() converts to C-style
– insert() inserts the operand string at a given position into (*this) string
– find() searches (*this) for the first occurrence of the operand string
– substr() returns a substring of (*this) defined by parameter values

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Containers

• A class with main purpose of holding an object is commonly called a
container

– Much computing involves creating collections of various forms of objects
and then manipulating such collections

– Providing suitable containers for a given task and supporting them with
useful fundamental operations are important steps in the construction of
any program

– Standard library provides useful containers

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Containers - List
• The standard library provides the list type

 list<Entry> phone_book;
 void print_entry (const string& s)
 {
 typedef list<Entry>::const_iterator LI;
 for (LI i = phone_book.begin(); i != phone_book.end(); i++){
 Entry& e = *i; // reference used as shorthand
 if (s == e.name) cout << e.name << ‘ ’ << e.number <<

‘\n’;
 }
 }

 void add_entry(Entry& e, list<Entry>::iterator I)
 {
 phone_book.push_front(e); // add at beginning
 phone_book.push_back(e); // add at end
 phone_book.insert(i, e); // add before the element’I’ refers to
 }

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Summary: Standard Containers

• Standard library provides some of the most general and
useful container types

Standard Container Summary
vector<T> A variable-sized vector
list<T> A doubly-linked list
queue<T> A queue
stack<T> A stack
deque<T> A double-ended queue
priority_queue<T> A queue sorted by a value
set<T> A set
multiset<T> A set in which a value can occur many times
map<key, val> An associative array
multimap<key, val> A map in which a value can occur many times

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Algorithms

• The standard library provides the most common algorithms for
containers
– For example, the following sorts a vector and places a copy of each

unique vector element on a list

 void f(list<Entry>& ve, vector<Entry>& le)
 {

 sort(ve.begin(), ve.end());
 copy_unique(ve.begin(), ve.end(),
le.begin());

 }

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Algorithms
• Standard Library Algorithms

Selected Standard Algorithms
for_each() Invoke function for each element
find() Find first occurrence of arguments
find_if() Find first match of predicate
count() Count occurrences of element
count_if() Count matches of predicate
replace() Replace element with new value
replace_if() Replace element that matches predicate with new value
copy() Copy elements
unique_copy() Copy elements that are not duplicates
sort() Sort elements
equal_range() Find all elements with equivalent values
merge() Merge sorted sequences

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Iterators

• Definition: Iterators are objects that enable the programmer to
successively access (iterate over) elements stored in a container object
without having to know or use the internal data structures and
organization used by the container class.

In C++, iterators are defined as nested classes within their associated
container classes. Furthermore, they have exactly the same properties as
pointers to container elements.

• Iterator Applications
– Outputting all elements of a container.
– Updating all elements of a container, or all elements satisfying a given

condition.
– Searching a container for a given element.
– Deleting or removing all elements satisfying a given condition.
– Sorting the elements in a container.

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Iterators
• Iterator Methods for List Containers

The following methods operate on list::interator and list::reverse_iterator
* (unary dereference operator) gives access to the list element referenced by the iterator.
++(postfix increment) advances the iterator to the next list element;

(closer to end()); when the iterator is at end(), then ++ advances it to begin()
-- (postfix decrement) advances the iterator to the previous list element;

(closer to begin()); when the iterator is at begin(), -- advances it to end()
==(iterator equality) returns true iff two iterators reference the same list element (the

elements themselves may not be equal)
!= (iterator not equal) returns true iff two iterators do not reference the same list element.

• Example
std::list<int> listofint; // create a list of integers
std::list<int>::iterator intiter; // create an iterator for the list of integers
for(intiter = listofint.begin(); intiter < listofint.end(); intiter++)

if (*intiter < 0) cout << *intiter;

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Math in C++

• How to calculate the square root of a function? We are able to do
that using a C++ mathematical library function.

• E.g. the argument to the sqrt function can be either an integer or real
value (function overloading).

© Kamrul Ahmed, http://www.neiu.edu/~ncaftori/c++DOC.ppt

– Expression Value Returned
– ___________________________________
– sqrt(4) 2.0
– sqrt (16) 4.0
– sqrt(6.45) 2.56

Math in C++

• To access these functions in a program requires that the
mathematical header file named math.h, be included with
the function.

• Reminder: This done by the following preprocessor
statement at the top of any program using a mathematical
function:

#include<math.h> // no semicolon

• Probably also need –lm compiler flag!

Appendix:
Some C++ Features

C Programmers Should Know

Object-Oriented Idea

• Make all objects, whether C-defined or user-
defined, first-class objects

• For C++ structures (called classes) allow:
– functions to be associated with the class
– only allow certain functions to access the internals of

the class
– allow the user to re-define existing functions (for

example, input and output) to work on class

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

Classes of Objects in C++

• Classes
– similar to structures in C (in fact, you can can still use

the struct definition)
– have fields corresponding to fields of a structure in C

(similar to variables)
– have fields corresponding to functions in C (functions

that can be applied to that structure)
– some fields are accessible by everyone, some not (data

hiding)
– some fields shared by the entire class

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

Inline Functions

• Problems with macros in C
– Can be a source of problems
– Has no class scope !!

• C++ solves the problem with inline functions
– Under the control of the compiler
– Expanded in-place

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

Counter Variables in a For Loop

• You can declare the variable(s) used in a for loop
in the initialization section of the for loop
– good when counter used in for loop only exists in for

loop (variable is throw-away)

• Example
for (int I = 0; I < 5; I++)

printf(“%d\n”,I);

• Variable exists only during for loop (goes away
when loop ends)

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

Initializing Global Variables

• Not restricted to using constant literal values in
initializing global variables, can use any evaluable
expression

• Example:
int rows = 5;
int cols = 6;
int size = rows * cols;

void main() {
...

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

Initializing Array Elements

• When giving a list of initial array values in C++,
you can use expressions that have to be evaluated

• Values calculated at run-time before initialization
done

• Example:
void main() {

int n1, n2, n3;
int *nptr[] = { &n1, &n2, &n3 };

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

void*

• In C it is legal to cast other pointers to and from a
void *

• In C++ this is an error, to cast you should use an
explicit casting command

• Example:
int N;
int *P = &N;
void *Q = P; // illegal in C++
void *R = (void *) P; // ok

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

C++ Class string
• Access to class string requires the following #include statement:

#include <string>
using namespace std;

• A string is an object in C++; strings are completely different types from C-
style arrays (char *).

• String variables are initialized by default to the null string (“”).
• String literals are C-style arrays, not members of class string. However, C++

automatically converts from C-style literals to string instances in most of the
obvious places, such as variable initializers (see below)
string str = “This is a C-style char array.”;

• String objects can be converted to C-style strings (null byte terminated) using
the function, c_str().

ifstream fin;
string filename;
cout << “Enter file name: “; cin >> filename;
fin.open(filename.c_str(), ios::in);

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

NULL in C++

• C++ does not use the value NULL, instead NULL
is always 0 in C++, so we simply use 0

• Example:
int *P = 0; // equivalent to

// setting P to NULL

• Can check for a 0 pointer as if true/false:
if (!P) // P is 0 (NULL)

...
else // P is not 0 (non-NULL)

...
© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

Tags and struct

• When using struct command in C++ (and for other
tagged types), can create type using tag format and
not use tag in variable declaration:
struct MyType {

int A;
float B;

};
MyType V;

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

enum in C++

• Enumerated types not directly represented as
integers in C++
– certain operations that are legal in C do not work in

C++
• Example:

void main() {
enum Color { red, blue, green };
Color c = red;
c = blue;
c = 1; // Error in C++
++c; // Error in C++

© 1999 Richard Maclin, http://www.d.umn.edu/~rmaclin/cs1622/C++Chapter01

Using the C Standard Library

• Access C runtime library by removing “.h”
from header files, and prepending “c”

#include <cstring> // strcmp, strlen, etc.

#include <cstdio> // printf, scanf, etc.

#include <cerrno> // errno, strerror, etc.

#include <cctype> // isalnum, isdigit, etc.

#include <cstdlib> // malloc, free, etc.

// etc.

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Hybrid C / C++ Programs

• Calling C functions from C++
extern "C" void f (int i, char c, float x);

• Allow C++ functions to be called from C
// This is C++ code
// Declare f(int,char,float) using extern C:
extern "C" void f(int i, char c, float x);
// ...
// Define f(int,char,float) in some C++ module
void f(int i, char c, float x){

// ...
}

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Resources and Further Reading
WWW:

http://www.desy.de/gna/html/cc/Tutorial/tutorial.html
http://www.cs.fit.edu/~mmahoney/cse2050/introcpp.html
http://www.acm.org/crossroads/xrds1-1/ovp.html
http://www.thefreecountry.com/compilers/cpp.shtml

Textbook this lecture is based on:

Bjarne Stroustrup, The C++ Programming Language,
3rd Ed,, Addison Wesley, 1997.

