

THE UNIVERSITY of TEXAS

HEALTH SCIENCE CENTER AT HOUSTON SCHOOL of HEALTH INFORMATION SCIENCES

Image Basics & Acquisition

For students of HI 5323 "Image Processing"

Willy Wriggers, Ph.D. School of Health Information Sciences

http://biomachina.org/courses/processing/01.html

Overview

If in doubt look at web site:

http://biomachina.org/courses/processing

Programming assignments

- C++
- Qt
- Unix or Windows

Math background

•Ideally: At least one quantitative discipline (physics, chemistry, mathematics, computer science) with solid background in geometry (ideally vector calculus).

•Alternative assignments possible in individual cases.

What are Signals?

- Signal: a function carrying information
- Examples:
 - Audio
 - Radio/Television
 - Images

Types of Signals: Dimensions

• Temporal signal: function of time

-f(t): voice, music, nerve impulses, radar

- Spatial signal: function of two (or three) spatial dimensions
 f(x, y): images (grayscale, color, multi-spectral)
 f(x, y, z): medical scans (CT, MRI, PET)
- Spatio-temporal signal: 2/3-D space, 1-D time

-f(x, y, t): video/movies

Why Signals?

- Communications:
 - Modems/Networks/Wireless
 - Audio
- Images:
 - Restoration/Cleanup
 - Enhancement
 - Storage/Retrieval/Searching
 - Manipulation

Why Digital?

- Perfect storage, transmission, and reproduction
- Easier to manipulate (than analog):
 - Analog signals manipulated by circuits
 - Digital signals manipulated by computer

Why Now?

- Memory is cheap
- Disk storage is plentiful
- Bandwidth increasing

Digital Image Processing

Subclass of signal processing dealing with pictures.

- Signal \rightarrow Function conveying information.
 - Audio, Radio/Television, etc.
- Image \rightarrow Signal with (at least) 2 spatial dimensions.
 - A representation, resemblance, likeness, etc.
- Digital \rightarrow perfect storage, transmission, reproduction
 - General-purpose manipulation.
 - Low cost memory and disk space
 - Bandwidth increasing

Elements of Digital Image Processing

- Computer \rightarrow To process images
- Input equipment \rightarrow Image digitizer
- Output equipment \rightarrow Image display device

Kinds of Images & Processes

- Nonoptical \rightarrow generated form other optical images
- Higher dimensional \rightarrow in three or more dimensions
- Nonstandard sampling → domain of image is sampled by a scheme
- Nonstandard quantization → quantizing levels are not equally spaced

What You Will Learn

- Level (brightness) operations
- Algebraic and logical operations
- Geometric transformations
- Filtering (both spatial and frequency-based)
- Sampling, Restoration, Denoising
- 3D Reconstruction
- Color processing
- Compression
- Pattern Recognition

Applications

- Multimedia (just look at the web)
- Image Editing and Manipulation (Photoshop)
- Medical Imaging (CT, MRI, EM)
- Compression (PNG, JPEG)
- Document Processing (OCR)
- Image Libraries (restoration/cleanup, storage, retrieval)
- Many More

CT

MRI

EM / Single Particle Imaging

© J. Frank

Relation to Other Fields

- Image Processing: Transform an image into another representation (image), often as a step to achieving some goal
- Computer Vision: Create a description of the imaged scene
- Computer Graphics: Create an image of the described scene

Imaging System

Any Questions?

Signals and Functions

- Signal: a function carrying information
- Functions have domains and ranges:

What do the Range Values Mean?

- May be visible light:
 - Intensity (gray-level)
 - Color (RGB)
- May be quantities we can *not* sense:
 - Radio waves (e.g., doppler radar)
 - Range images
 - Ultrasound
 - Magnetic resonance
 - X-rays (e.g., CT)

Domains & Ranges

- Analog: continuous domain and range
- Digital: discrete domain and range
- Converting from continuous to discrete:
 - Domains: selection of discrete points is called *sampling*
 - Ranges: selection of discrete values is called *quantization*

Eric Mortenson 2001

Sampling or Quantization?

- Dots per inch
- Black and white images
- Frames per second
- 44.1 KHz audio
- 16-bit audio
- 24-bit color

Sampling vs. Quantization

- Sampling described using terms such as:
 - Rate
 - Frequency
 - Spacing
 - Density
- Quantization is referred to as:
 - # of discrete values
 - # of bits per sample/pixel

Resolution

- Ability to discern detail both domain & range.
- *Not* simply the number of samples/pixels.
- Determined by the averaging or spreading of information when sampled or reconstructed.

Acquisition Devices

- Aperture "size" of sampling area.
- Scanning ordered sampling of signal/image.
- Sensor measures quantity of sample.
- Quantizer converts continuous to discrete.
- Output storage medium saves quantized samples.

Compare: pinhole w/film & CCD cameras

Acquisition Devices

- Aperture "size" of sampling area.
- Scanning ordered sampling of signal/image.
- Sensor measures quantity of sample.
- Quantizer converts continuous to discrete.
- Output storage medium saves quantized samples.

Apertures

- Point measurements are impossible
- Have to make measurements using a (weighted) average over some aperture:
 - Time window
 - Spatial area
 - Etc.
- Size determines resolution:
 - Smaller \rightarrow better resolution
 - Larger \rightarrow worse resolution

Apertures

• Lenses allow physically larger aperture with effectively smaller one

Sensor

- Converts physical property (e.g., light/photons) to chemical and/or electrical response.
- Examples:
 - Film: silver halide crystals
 - Eyes: photoreceptors (rods, cones)
 - Digital camera: charge-coupled device (CCD)

Capture Images

- Focus the optics correctly to capture images
 - Camera for macroscopic scenes: distance measure technology:

High frequency sound, infrared light

- Camera for microscopy application
- Detect the quality of image sharpness
 - Hardware
 - Software

Noise

- Unavoidable/undesirable fluctuation from "correct" value:
 - The nemesis of signal and image processing
- Usually random: modeled as a statistical distribution
 - Mean (μ) at the "correct" value.
 - Measured sample varies from μ according to distribution (σ).
- Signal-to-Noise Ratio (SNR) = $\frac{\mu}{\sigma}$:

- Measures how "noise free" the acquired signal is.

Signal to Noise Ratio

- A) Signal to noise ratio 1:1
- B) Signal to noise ratio 1:3
- C) Signal to noise ratio 1:7
- D) Image c after spatial smoothing

Signal-to-noise ratio of averaged image improves as the square root of the number of frames summed

Sources of Noise

- Quantum: discrete nature of light (photons)
 - Poisson distributed: $\sigma = \sqrt{\mu}$
 - SNR increases with more light:
 - Turn up light source
 - Larger aperture
 - Collect longer
- "Background" (Thermal) : a.k.a. "Dark" current
 - Thermal electrons indistinguishable from photoelectrons.
 - Builds up over time.
 - Decreases with:
 - Cooler environment
 - Shorter collection time

Sources of Noise (cont.)

- Sensor In homogeneity: every sensor is unique
 - Dark current levels vary from element to element.
 - Long exposures produce fixed patterns:
 - Can be subtracted out.
- Circuitry: (prior to converting to digital)
 - Electromagnetic interference from other circuits.
 - Shifting charge from well to well (CCD):
 - Some photoelectrons lost: (charge-transfer efficiency < 1)
 - "Dead" pixels.

Noise vs. Resolution

- Smaller Aperture:
 - Higher resolution
 - Less area \rightarrow fewer photons \rightarrow more noise
- Larger Aperture:
 - Lower resolution
 - More area \rightarrow more photons \rightarrow less noise
- Lens
 - Larger physical (photon collection) area.
 - Smaller effective (resolution) aperture.

Noise vs. Resolution

- Example 1: Camera settings
 - F-stop: aperture
 - Shutter speed: collection time
- Example 2: Film crystals
 - Larger : lower resolution but faster (short exposure)
 - Smaller: higher resolution but slower (long exposure)

High Resolution Imaging

- High numbers array sensors
- Great display depth
- High number of gray levels

Tradeoff

- Cooling the camera to reduce electronic
- Slower image acquisition and digitization

Ideal Sensor Response

• Multiplying input by a constant value multiplies the output by the same constant:

 $f(a\mathbf{x}) = a f(\mathbf{x})$

• Adding two inputs causes corresponding outputs to add:

$$f(\boldsymbol{x} + \boldsymbol{y}) = \boldsymbol{f}(\boldsymbol{x}) + f(\boldsymbol{y})$$

• Linearity:

$$f(a\mathbf{x} + b\mathbf{y}) = a f(\mathbf{x}) + b f(\mathbf{y})$$

Typical Sensor Response

- Every sensor has an effective dynamic range.
- Most "approximately linear" devices are linear over some range:
 - Low (< toe): flat (nonzero) response
 - Middle: linear response (effective dynamic range)
 - High (> shoulder): saturation and blooming
- Example: H & D curve for film.

Gain and Offset

Gain = proportionality of output to input.

Offset (Bias) = constant addition to output.

Other Sensor Problems

• Blooming: Photoelectrons "overflow" from one sensor well to neighboring (electrically connected) wells.

Modulation Transfer Function

- A way of measuring resolution:
 - Instead of line-pairs, uses sine waves
- Measure the contrast of the response as a function of frequency:

Color Imaging

- RGB et al.
- e.g. pseudo-color display

Color composites made from SEM electron and X-ray images

Color Space

Conversion from RGB to YIQ/YUV (no information loss)

Y = 0.299R + 0.587G + 0.114B	R = 1.000Y + 0.956I + 0.621Q
I = 0.596R - 0.274G - 0.322B	G = 1.000Y - 0.272I - 0.647Q
Q = 0.211R - 0.523G + 0.312B	B = 1.000Y - 1.106I + 1.703Q

Interconversion of RGB and YIQ color scales

Resources and Further Reading

Textbooks: Kenneth R. Castleman, Digital Image Processing, Chapter 1, 2 John C. Russ, The Image Processing Handbook, Chapter 1

Reading Assignment

Textbooks: Kenneth R. Castleman, Digital Image Processing, Chapter 3, 4, 5 John C. Russ, The Image Processing Handbook, Chapter 3, 4

Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source by permission:

http://web.engr.oregonstate.edu/~enm/cs519

© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon, 97331